Probing microtubule polymerisation state at single kinetochores during metaphase chromosome motion

被引:20
作者
Armond, Jonathan W. [1 ,2 ]
Vladimirou, Elina [3 ]
Erent, Muriel [3 ]
McAinsh, Andrew D. [3 ]
Burroughs, Nigel J. [1 ,2 ]
机构
[1] Univ Warwick, Warwick Syst Biol Ctr, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Warwick Med Sch, Div Biomed Cell Biol, Coventry CV4 7AL, W Midlands, England
基金
英国生物技术与生命科学研究理事会;
关键词
K-fibres; KIF18A; MCAK; Kinetochores; Mitosis; Kinesin; EB3; DIRECTIONAL INSTABILITY; MECHANISM; SPINDLE; MITOSIS; CELLS; DYNAMICS; KIF18A; ATTACHMENT; MOVEMENTS; PROTEIN;
D O I
10.1242/jcs.168682
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Kinetochores regulate the dynamics of attached microtubule bundles (kinetochore-fibres, K-fibres) to generate the forces necessary for chromosome movements in mitosis. Current models suggest that poleward-moving kinetochores are attached to depolymerising K-fibres and anti-poleward-moving kinetochores to polymerising K-fibres. How the dynamics of individual microtubules within the K-fibre relate to poleward and anti-poleward movements is poorly understood. To investigate this, we developed a live-cell imaging assay combined with computational image analysis that allows eGFP-tagged EB3 (also known as MAPRE3) to be quantified at thousands of individual metaphase kinetochores as they undergo poleward and anti-poleward motion. Surprisingly, we found that K-fibres are incoherent, containing both polymerising and depolymerising microtubules - with a small polymerisation bias for anti-poleward-moving kinetochores. K-fibres also display bursts of EB3 intensity, predominantly on anti-poleward-moving kinetochores, equivalent to more coherent polymerisation, and this was associated with more regular oscillations. The frequency of bursts and the polymerisation bias decreased upon loss of kinesin-13, whereas loss of kinesin-8 elevated polymerisation bias. Thus, kinetochores actively set the balance of microtubule polymerisation dynamics in the K-fibre while remaining largely robust to fluctuations in microtubule polymerisation.
引用
收藏
页码:1991 / 2001
页数:11
相关论文
共 39 条
[1]   Molecular control of kinetochore-microtubule dynamics and chromosome oscillations [J].
Amaro, Ana C. ;
Samora, Catarina P. ;
Holtackers, Rene ;
Wang, Enxiu ;
Kingston, Isabel J. ;
Alonso, Maria ;
Lampson, Michael ;
McAinsh, Andrew D. ;
Meraldi, Patrick .
NATURE CELL BIOLOGY, 2010, 12 (04) :319-U42
[2]  
[Anonymous], 1987, Multiple comparison procedures
[3]   Reconstitution of a microtubule plus-end tracking system in vitro [J].
Bieling, Peter ;
Laan, Liedewij ;
Schek, Henry ;
Munteanu, E. Laura ;
Sandblad, Linda ;
Dogterom, Marileen ;
Brunner, Damian ;
Surrey, Thomas .
NATURE, 2007, 450 (7172) :1100-1105
[4]   TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly [J].
Cassimeris, L ;
Morabito, J .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (04) :1580-1590
[5]   Molecular architecture of the kinetochore-microtubule interface [J].
Cheeseman, Iain M. ;
Desai, Arshad .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2008, 9 (01) :33-46
[6]   Model of chromosome motility in Drosophila embryos:: Adaptation of a general mechanism for rapid mitosis [J].
Civelekoglu-Scholey, G. ;
Sharp, D. J. ;
Mogilner, A. ;
Scholey, J. M. .
BIOPHYSICAL JOURNAL, 2006, 90 (11) :3966-3982
[7]   Spindle assembly in animal cells [J].
Compton, DA .
ANNUAL REVIEW OF BIOCHEMISTRY, 2000, 69 :95-114
[8]   Hec1 and Nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites [J].
DeLuca, JG ;
Dong, YM ;
Hergert, P ;
Strauss, J ;
Hickey, JM ;
Salmon, ED ;
McEwen, BF .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (02) :519-531
[9]   Kin I kinesins are microtubule-destabilizing enzymes [J].
Desai, A ;
Verma, S ;
Mitchison, TJ ;
Walczak, CE .
CELL, 1999, 96 (01) :69-78
[10]   The Kinesin-8 Kif18A Dampens Microtubule Plus-End Dynamics [J].
Du, Yaqing ;
English, Chauca A. ;
Ohi, Ryoma .
CURRENT BIOLOGY, 2010, 20 (04) :374-380