An Overview of ARTMIP's Tier 2 Reanalysis Intercomparison: Uncertainty in the Detection of Atmospheric Rivers and Their Associated Precipitation

被引:71
作者
Collow, A. B. Marquardt [1 ,2 ,3 ]
Shields, C. A. [4 ]
Guan, B. [5 ,6 ]
Kim, S. [7 ]
Lora, J. M. [8 ]
McClenny, E. E. [9 ]
Nardi, K. [10 ]
Payne, A. [11 ,12 ]
Reid, K. [13 ,14 ]
Shearer, E. J. [15 ]
Tome, R. [16 ]
Wille, J. D. [17 ]
Ramos, A. M. [16 ]
Gorodetskaya, I., V [18 ]
Leung, L. R. [19 ]
O'Brien, T. A. [20 ,21 ]
Ralph, F. M. [22 ]
Rutz, J. [23 ]
Ullrich, P. A. [9 ]
Wehner, M. [24 ]
机构
[1] Univ Space Res Assoc, Columbia, MD 21046 USA
[2] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
[3] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, POB 3000, Boulder, CO 80307 USA
[5] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA
[6] CALTECH, Jet Prop Lab, Pasadena, CA USA
[7] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA
[8] Yale Univ, Dept Earth & Planetary Sci, New Haven, CT USA
[9] Univ Calif Davis, Davis, CA 95616 USA
[10] Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
[11] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[12] Tomorrowio, Boston, MA USA
[13] Univ Melbourne, Sch Geog Earth & Atmospher Sci, Melbourne, Vic, Australia
[14] Univ Melbourne, ARC Ctr Excellence Climate Extremes, Melbourne, Vic, Australia
[15] Univ Calif Irvine, Henry Samueli Sch Engn, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing CHRS, Irvine, CA USA
[16] Univ Lisbon, Fac Ciencias, Inst Dom Luiz, Lisbon, Portugal
[17] Inst Geosci Environm, CNRS UGA IRD G INP, Grenoble, France
[18] Univ Aveiro, CESAM Ctr Environm & Marine Studies, Dept Phys, Aveiro, Portugal
[19] Pacific Northwest Natl Lab, Earth Syst Anal & Modeling, Richland, WA 99352 USA
[20] Indiana Univ, Dept Earth & Atmospher Sci, Bloomington, IN USA
[21] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA
[22] Scripps Inst Oceanog, Ctr Western Weather & Water Extremes, La Jolla, CA USA
[23] NOAA, Sci & Technol Infus Div, Natl Weather Serv Western Reg Headquarters, Salt Lake City, UT USA
[24] Lawrence Berkeley Natl Lab, Appl Math & Computat Res Div, Berkeley, CA USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
atmospheric river; reanalysis intercomparison; MERRA-2; ERA5; JRA-55; LOW-LEVEL JET; NORTH PACIFIC; CLIMATOLOGY; WASHINGTON; ALGORITHM; LANDFALL; IMPACT; COAST;
D O I
10.1029/2021JD036155
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Atmospheric rivers, or long but narrow regions of enhanced water vapor transport, are an important component of the hydrologic cycle as they are responsible for much of the poleward transport of water vapor and result in precipitation, sometimes extreme in intensity. Despite their importance, much uncertainty remains in the detection of atmospheric rivers in large datasets such as reanalyses and century scale climate simulations. To understand this uncertainty, the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) developed tiered experiments, including the Tier 2 Reanalysis Intercomparison that is presented here. Eleven detection algorithms submitted hourly tags--binary fields indicating the presence or absence of atmospheric rivers--of detected atmospheric rivers in the Modern Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) and European Centre for Medium-Range Weather Forecasts' Reanalysis Version 5 (ERA5) as well as six-hourly tags in the Japanese 55-year Reanalysis (JRA-55). Due to a higher climatological mean for integrated water vapor transport in MERRA-2, atmospheric rivers were detected more frequently relative to the other two reanalyses, particularly in algorithms that use a fixed threshold for water vapor transport. The finer horizontal resolution of ERA5 resulted in narrower atmospheric rivers and an ability to detect atmospheric rivers along resolved coastlines. The fraction of hemispheric area covered by ARs varies throughout the year in all three reanalyses, with different atmospheric river detection tools having different seasonal cycles.
引用
收藏
页数:20
相关论文
共 76 条
[71]   Characteristics of Satellite Sampling Errors in Total Precipitable Water from SSMIS, HIRS, and COSMIC Observations [J].
Xue, Yunheng ;
Li, Jun ;
Menzel, W. Paul ;
Borbas, Eva ;
Ho, Shu-Peng ;
Li, Zhenglong ;
Li, Jinlong .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (13) :6966-6981
[72]   Dynamic and Thermodynamic Modulators of European Atmospheric Rivers [J].
Zavadoff, Breanna L. ;
Kirtman, Ben P. .
JOURNAL OF CLIMATE, 2020, 33 (10) :4167-4185
[73]   Uncertainties in Atmospheric River Lifecycles by Detection Algorithms: Climatology and Variability [J].
Zhou, Yang ;
O'Brien, Travis A. ;
Ullrich, Paul A. ;
Collins, William D. ;
Patricola, Christina M. ;
Rhoades, Alan M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (08)
[74]   Impact of Distinct Origin Locations on the Life Cycles of Landfalling Atmospheric Rivers Over the US West Coast [J].
Zhou, Yang ;
Kim, Hyemi .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (22) :11897-11909
[75]  
Zhu Y, 1998, MON WEATHER REV, V126, P725, DOI 10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO
[76]  
2