Recurrence Coefficients of a New Generalization of the Meixner Polynomials

被引:16
作者
Filipuk, Galina [1 ]
Van Assche, Walter [2 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, PL-02097 Warsaw, Poland
[2] Katholieke Univ Leuven, Dept Math, BE-3001 Louvain, Belgium
关键词
Painleve equations; Backlund transformations; classical solutions; orthogonal polynomials; recurrence coefficients;
D O I
10.3842/SIGMA.2011.068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate new generalizations of the Meixner polynomials on the lattice N, on the shifted lattice N + 1 - beta and on the bi-lattice N boolean OR (N + 1 - beta). We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to the solutions of the fifth Painleve equation P-V. Initial conditions for different lattices can be transformed to the classical solutions of P-V with special values of the parameters. We also study one property of the Backlund transformation of P-V.
引用
收藏
页数:11
相关论文
共 12 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]   Recurrence coefficients of generalized Meixner polynomials and Painleve equations [J].
Boelen, Lies ;
Filipuk, Galina ;
Van Assche, Walter .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (03)
[3]  
Chihara T.S., 1978, Mathematics and Its Applications Series, V13
[4]  
FILIPUK G, ARXIV11062959
[5]  
FILIPUK G, ARXIV11055229
[6]  
GROMAK V, 2003, U JOENSUU DEP MATH R, V5, P9
[7]  
GROMAK V, 2001, MATH MODEL ANAL, V6, P221
[8]   Functional relations between solutions of the fifth Painleve equation [J].
Gromak, VI ;
Filipuk, GV .
DIFFERENTIAL EQUATIONS, 2001, 37 (05) :614-620
[9]  
Gromak VI., 2002, DEGRUYTER STUD MATH, V28
[10]   PAINLEVE-TYPE DIFFERENTIAL-EQUATIONS FOR THE RECURRENCE COEFFICIENTS OF SEMICLASSICAL ORTHOGONAL POLYNOMIALS [J].
MAGNUS, AP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 57 (1-2) :215-237