An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes

被引:780
作者
Zhao, Chen-Zi [1 ]
Zhang, Xue-Qiang [1 ]
Cheng, Xin-Bing [1 ]
Zhang, Rui [1 ]
Xu, Rui [2 ]
Chen, Peng-Yu [1 ]
Peng, Hong-Jie [1 ]
Huang, Jia-Qi [2 ]
Zhang, Qiang [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium metal anode; composite electrolyte; all-solid-state lithium batteries; immobilized anion; lithium dendrite; SOLID-STATE; RECHARGEABLE BATTERIES; POLYMER ELECTROLYTE; IN-SITU; ELECTRODEPOSITION; INTERPHASE; SEPARATOR; INTERFACE; TRANSPORT; SIO2;
D O I
10.1073/pnas.1708489114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium metal is strongly regarded as a promising electrode material in next-generation rechargeable batteries due to its extremely high theoretical specific capacity and lowest reduction potential. However, the safety issue and short lifespan induced by uncontrolled dendrite growth have hindered the practical applications of lithium metal anodes. Hence, we propose a flexible anion-immobilized ceramic-polymer composite electrolyte to inhibit lithium dendrites and construct safe batteries. Anions in the composite electrolyte are tethered by a polymer matrix and ceramic fillers, inducing a uniform distribution of space charges and lithium ions that contributes to a dendrite-free lithium deposition. The dissociation of anions and lithium ions also helps to reduce the polymer crystallinity, rendering stable and fast transportation of lithium ions. Ceramic fillers in the electrolyte extend the electrochemically stable window to as wide as 5.5 V and provide a barrier to short circuiting for realizing safe batteries at elevated temperature. The anion-immobilized electrolyte can be applied in all-solid-state batteries and exhibits a small polarization of 15 mV. Cooperated with LiFePO4 and LiNi0.5Co0.2Mn0.3O2 cathodes, the all-solid-state lithium metal batteries render excellent specific capacities of above 150 mAh.g(-1) and well withstand mechanical bending. These results reveal a promising opportunity for safe and flexible next-generation lithium metal batteries.
引用
收藏
页码:11069 / 11074
页数:6
相关论文
共 58 条
[1]   The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons [J].
Chen, Renjie ;
Qu, Wenjie ;
Guo, Xing ;
Li, Li ;
Wu, Feng .
MATERIALS HORIZONS, 2016, 3 (06) :487-516
[2]   Ultrathin Co3O4 Layers with Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible Zinc-Air Battery Integrated with Flexible Display [J].
Chen, Xu ;
Liu, Bin ;
Zhong, Cheng ;
Liu, Zhi ;
Liu, Jie ;
Ma, Lu ;
Deng, Yida ;
Han, Xiaopeng ;
Wu, Tianpin ;
Hu, Wenbin ;
Lu, Jun .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[3]   Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2018, 10 :199-205
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Chen, Xiang ;
Guan, Chao ;
Huang, Jia-Qi ;
Peng, Hong-Jie ;
Zhang, Rui ;
Yang, Shu-Ting ;
Zhang, Qiang .
CHEM, 2017, 2 (02) :258-270
[6]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[7]   Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes [J].
Croce, F ;
Persi, L ;
Scrosati, B ;
Serraino-Fiory, F ;
Plichta, E ;
Hendrickson, MA .
ELECTROCHIMICA ACTA, 2001, 46 (16) :2457-2461
[8]   Review-Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions [J].
Erickson, Evan M. ;
Markevich, Elena ;
Salitra, Gregory ;
Sharon, Daniel ;
Hirshberg, Daniel ;
de la Llave, Ezequiel ;
Shterenberg, Ivgeni ;
Rozenman, Ariel ;
Frimer, Aryeh ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2424-A2438
[9]   Effect of modified SiO2 on the properties of PEO-based polymer electrolytes [J].
Fan, LZ ;
Nan, CW ;
Zhao, SJ .
SOLID STATE IONICS, 2003, 164 (1-2) :81-86
[10]   More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Wei ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED MATERIALS, 2017, 29 (48)