Appell transformation and symmetry transformations for the paraxial wave equation

被引:3
作者
Torre, A. [1 ]
机构
[1] ENEA, UTAPRAD MAT, Lab Modellist Matemat, I-00044 Frascati, Rome, Italy
关键词
paraxial wave equation; Appell transformation; heat equation; CANONICAL-TRANSFORMATIONS; ACCIDENTAL DEGENERACY; FOURIER-TRANSFORMS; LIE THEORY; COMPLEX; DECOMPOSITION; SEPARATION; VARIABLES; LAPLACE; SYSTEM;
D O I
10.1088/2040-8978/13/7/075710
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The analysis presented in this paper is the natural continuation of that developed in a previous paper, where the Appell transformation, well known in the theory of the heat equation, has been interpreted in relation to the paraxial (free) propagation under both a rectangular and a circular cylindrical symmetry as connecting solutions of the pertinent paraxial wave equation, which are generated by Fourier or Hankel pairs of functions. Indeed, here we will reformulate in optical terms the result proved by Leutwiler relative to the n-dimensional heat equation. Accordingly, we will show that the optical Appell transformation is essentially-in the sense clarified in the text-the only symmetry transformation for the paraxial wave equation.
引用
收藏
页数:12
相关论文
共 51 条
[1]  
Appell M. P., 1892, J MATH PURE APPL, V8, P187
[2]   DECOMPOSITION FORMULAS FOR SU(1,1) AND SU(2) LIE-ALGEBRAS AND THEIR APPLICATIONS IN QUANTUM OPTICS [J].
BAN, MS .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (08) :1347-1359
[3]   Paraxial group [J].
Bandres, Miguel A. ;
Guizar-Sicairos, Manuel .
OPTICS LETTERS, 2009, 34 (01) :13-15
[4]   COMPLEX SCALING - INTRODUCTION [J].
BARDSLEY, JN .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1978, 14 (04) :343-352
[5]   Synthesis of an arbitrary ABCD system with fixed lens positions [J].
Bastiaans, Martin J. ;
Alieva, Tatiana .
OPTICS LETTERS, 2006, 31 (16) :2414-2416
[6]   On the Iwasawa decomposition of a symplectic matrix [J].
Benzi, Michele ;
Razouk, Nader .
APPLIED MATHEMATICS LETTERS, 2007, 20 (03) :260-265
[7]   LIE THEORY AND SEPARATION OF VARIABLES .6. EQUATION IUT + DELTA2 U =O [J].
BOYER, CP ;
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :499-511
[8]   RADIAL HEAT POLYNOMIALS AND RELATED FUNCTIONS [J].
BRAGG, LR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 119 (02) :270-&
[9]   RADIAL HEAT EQUATION AND LAPLACE TRANSFORMS [J].
BRAGG, LR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (05) :986-&
[10]  
BRANDAS E, 1986, INT J QUANTUM CHEM, P119