In the Early Stages of Diabetes, Rat Retinal Mitochondria Undergo Mild Uncoupling due to UCP2 Activity

被引:18
作者
Osorio-Paz, Ixchel [1 ]
Uribe-Carvajal, Salvador [2 ]
Salceda, Rocio [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fisiol Celular, Dept Neurodesarrollo & Fisiol, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Fisiol Celular, Dept Mol Genet, Mexico City 04510, DF, Mexico
关键词
BETA-PINENE; GLUCOSE; METABOLISM; MEMBRANE; BRAIN; RETINOPATHY; ACTIVATION; MORPHOLOGY; MECHANISM; GLUTAMINE;
D O I
10.1371/journal.pone.0122727
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6mM to 30mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 +/- 1.1 natgO (min. mg prot)(-1) and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress.
引用
收藏
页数:15
相关论文
共 38 条
[1]   SAFRANINE AS A PROBE OF MITOCHONDRIAL-MEMBRANE POTENTIAL [J].
AKERMAN, KEO ;
WIKSTROM, MKF .
FEBS LETTERS, 1976, 68 (02) :191-197
[2]  
[Anonymous], 1997, Invest Ophthalmol Vis Sci, V38, pS1
[3]   Diabetic retinopathy - Seeing beyond glucose-induced microvascular disease [J].
Antonetti, David A. ;
Barber, Alistair J. ;
Bronson, Sarah K. ;
Freeman, Willard M. ;
Gardner, Thomas W. ;
Jefferson, Leonard S. ;
Kester, Mark ;
Kimball, Scot R. ;
Krady, J. Kyle ;
LaNoue, Kathryn F. ;
Norbury, Christopher C. ;
Quinn, Patrick G. ;
Sandirasegarane, Lakshman ;
Simpson, Ian A. .
DIABETES, 2006, 55 (09) :2401-2411
[4]   Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues [J].
Birch-Machin, MA ;
Turnbull, DM .
METHODS IN CELL BIOLOGY, VOL 65: MITOCHONDRIA, 2001, 65 :97-117
[5]   Mitochondrial energetics in the heart in obesity-related diabetes - Direct evidence for increased uncoupled respiration and activation of uncoupling proteins [J].
Boudina, Sihem ;
Sena, Sandra ;
Theobald, Heather ;
Sheng, Xiaoming ;
Wright, Jordan J. ;
Hu, Xia Xuan ;
Aziz, Salwa ;
Johnson, Josie I. ;
Bugger, Heiko ;
Zaha, Vlad G. ;
Abel, E. Dale .
DIABETES, 2007, 56 (10) :2457-2466
[6]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[7]   Uncoupling proteins: A role in protection against reactive oxygen species - or not? [J].
Cannon, Barbara ;
Shabalina, Irina G. ;
Kramarova, Tatiana V. ;
Petrovic, Natasa ;
Nedergaard, Jan .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (5-6) :449-458
[8]   UCP2 and ANT differently modulate proton-leak in brain mitochondria of long-term hyperglycemic and recurrent hypoglycemic rats [J].
Cardoso, Susana ;
Santos, Maria S. ;
Moreno, Antonio ;
Moreira, Paula I. .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2013, 45 (04) :397-407
[9]   Glucose metabolism in rat retinal pigment epithelium [J].
Coffe, V ;
Carbajal, RC ;
Salceda, R .
NEUROCHEMICAL RESEARCH, 2006, 31 (01) :103-108
[10]   Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone) [J].
Echtay, KS ;
Winkler, E ;
Frischmuth, K ;
Klingenberg, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (04) :1416-1421