Prediction of Protein-Protein Interaction Sites by Multifeature Fusion and RF with mRMR and IFS
被引:1
|
作者:
Zhang, JunYan
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130024, Jilin, Peoples R China
Northeast Normal Univ, Grad Sch, Changchun 130024, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Informat Sci & Technol, Changchun 130024, Jilin, Peoples R China
Zhang, JunYan
[1
,2
]
Lyu, Yinghua
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130024, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Informat Sci & Technol, Changchun 130024, Jilin, Peoples R China
Lyu, Yinghua
[1
]
Ma, Zhiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130024, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Informat Sci & Technol, Changchun 130024, Jilin, Peoples R China
Ma, Zhiqiang
[1
]
机构:
[1] Northeast Normal Univ, Sch Informat Sci & Technol, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Grad Sch, Changchun 130024, Jilin, Peoples R China
Prediction of protein-protein interaction (PPI) sites is one of the most perplexing problems in drug discovery and computational biology. Although significant progress has been made by combining different machine learning techniques with a variety of distinct characteristics, the problem still remains unresolved. In this study, a technique for PPI sites is presented using a random forest (RF) algorithm followed by the minimum redundancy maximal relevance (mRMR) approach, and the method of incremental feature selection (IFS). Physicochemical properties of proteins and the features of the residual disorder, sequence conservation, secondary structure, and solvent accessibility are incorporated. Five 3D structural characteristics are also used to predict PPI sites. Analysis of features shows that 3D structural features such as relative solvent-accessible surface area (RASA) and surface curvature (SC) help in the prediction of PPI sites. Results show that the performance of the proposed predictor is superior to several other state-of-the-art predictors, whose average prediction accuracy is 81.44%, sensitivity is 82.17%, and specificity is 80.71%, respectively. The proposed predictor is expected to become a helpful tool for finding PPI sites, and the feature analysis presented in this study will give useful insights into protein interaction mechanisms.
机构:
Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Syst Biol, Shanghai, Peoples R China
Shanghai Ctr Bioinformat Technol, Shanghai, Peoples R ChinaShanghai Univ, Inst Syst Biol, Shanghai, Peoples R China
Li, Bi-Qing
Feng, Kai-Yan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Genom Inst, Shenzhen, Peoples R ChinaShanghai Univ, Inst Syst Biol, Shanghai, Peoples R China
Feng, Kai-Yan
Chen, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Maritime Univ, Coll Informat Engn, Shanghai, Peoples R ChinaShanghai Univ, Inst Syst Biol, Shanghai, Peoples R China
Chen, Lei
Huang, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Syst Biol, Shanghai, Peoples R China
Shanghai Ctr Bioinformat Technol, Shanghai, Peoples R China
Mt Sinai Sch Med, Dept Genet & Genom Sci, New York, NY USAShanghai Univ, Inst Syst Biol, Shanghai, Peoples R China
Huang, Tao
Cai, Yu-Dong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Inst Syst Biol, Shanghai, Peoples R ChinaShanghai Univ, Inst Syst Biol, Shanghai, Peoples R China
机构:
Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Qingdao Univ Sci & Technol, Artificial Intelligence & Biomed Big Data Res Ctr, Qingdao 266061, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Wang, Xue
Zhang, Yaqun
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Qingdao Univ Sci & Technol, Artificial Intelligence & Biomed Big Data Res Ctr, Qingdao 266061, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Zhang, Yaqun
Yu, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Qingdao Univ Sci & Technol, Artificial Intelligence & Biomed Big Data Res Ctr, Qingdao 266061, Peoples R China
Sci Computat Lab, Applicat Hainan Prov, Haikou 571158, Hainan, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Yu, Bin
Salhi, Adil
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Computat Bioscience Res Ctr CBRC, Thuwal 23955, Saudi ArabiaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Salhi, Adil
Chen, Ruixin
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Qingdao Univ Sci & Technol, Artificial Intelligence & Biomed Big Data Res Ctr, Qingdao 266061, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Chen, Ruixin
Wang, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Qingdao Univ Sci & Technol, Artificial Intelligence & Biomed Big Data Res Ctr, Qingdao 266061, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Wang, Lin
Liu, Zengfeng
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
Qingdao Univ Sci & Technol, Artificial Intelligence & Biomed Big Data Res Ctr, Qingdao 266061, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
机构:
Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
Henan Univ Sci & Technol, Coll Food & Bioengn, Luoyang 471003, Peoples R ChinaDalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
Qiu, Zhijun
Wang, Xicheng
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R ChinaDalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
机构:
Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Shandong, Peoples R China
Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
Qingdao Univ Sci & Technol, Artificial Intelligence & Biomed Big Data Res Ctr, Qingdao 266061, Shandong, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Shandong, Peoples R China
Wang, Xiaoying
Yu, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Shandong, Peoples R China
Qingdao Univ Sci & Technol, Artificial Intelligence & Biomed Big Data Res Ctr, Qingdao 266061, Shandong, Peoples R China
Univ Sci & Technol China, Sch Life Sci, Hefei 230027, Anhui, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Shandong, Peoples R China
Yu, Bin
Ma, Anjun
论文数: 0引用数: 0
h-index: 0
机构:
South Dakota State Univ, Dept Agron Hort & Plant Sci, Bioinformat & Math Biosci Lab, Brookings, SD 57006 USA
Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USAQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Shandong, Peoples R China
Ma, Anjun
Chen, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Shandong, Peoples R China
Qingdao Univ Sci & Technol, Artificial Intelligence & Biomed Big Data Res Ctr, Qingdao 266061, Shandong, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Shandong, Peoples R China
Chen, Cheng
Liu, Bingqiang
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R ChinaQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Shandong, Peoples R China
Liu, Bingqiang
Ma, Qin
论文数: 0引用数: 0
h-index: 0
机构:
South Dakota State Univ, Dept Agron Hort & Plant Sci, Bioinformat & Math Biosci Lab, Brookings, SD 57006 USA
Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USAQingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Shandong, Peoples R China