Construction of new soliton-like solutions of the (2+1) dimensional dispersive long wave equation

被引:50
作者
Yomba, E
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Univ Ngaoundere, Fac Sci, Dept Phys, Ngaoundere, Cameroon
关键词
D O I
10.1016/j.chaos.2003.09.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using a improved extended tanh method with the aid of symbolic computation system, some new soliton-like solutions of the (2 + 1) dimensional spaces long wave equation are obtained. (C) 2003 Published by Elsevier Ltd.
引用
收藏
页码:1135 / 1139
页数:5
相关论文
共 43 条
[1]  
Ablowitz MJ., 1991, Nonlinear Evolution Equations and Inverse Scattering, DOI 10.1017/CBO9780511623998
[2]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[3]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[4]   Auto-Backlund transformation and exact solutions for modified nonlinear dispersive mK(m, n) equations [J].
Chen, Y ;
Li, B ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :693-698
[5]   Exact solutions for a family of variable-coefficient "reaction-duffing" equations via the Backlund transformation [J].
Chen, Y ;
Yan, ZY ;
Zhang, HQ .
THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 132 (01) :970-975
[6]  
DUBROUSKY VG, 1994, J PHYS A, V27, P4719
[7]   Modified extended tanh-function method for solving nonlinear partial differential equations [J].
Elwakil, SA ;
El-labany, SK ;
Zahran, MA ;
Sabry, R .
PHYSICS LETTERS A, 2002, 299 (2-3) :179-188
[8]   Darboux transformation and solutions for an equation in 2+1 dimensions [J].
Estévez, PG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) :1406-1419
[9]   A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations [J].
Fan, E .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) :4327-4344
[10]   Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation [J].
Fan, EG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (39) :6925-6933