Weighted moments for a supercritical branching process in a varying or random environment

被引:6
|
作者
Li YingQiu [1 ,2 ]
Hu YangLi [1 ,2 ]
Liu QuanSheng [1 ,3 ]
机构
[1] Changsha Univ Sci & Technol, Coll Math & Comp Sci, Changsha 410004, Hunan, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[3] Univ Bretgne Sud, LMAM, F-56017 Vannes, France
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
branching process; varying environment; random environment; moment; martingale;
D O I
10.1007/s11425-011-4220-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W be the limit of the normalized population size of a supercritical branching process in a varying or random environment. By an elementary method, we find sufficient conditions under which W has finite weighted moments of the form EW (p) l(W), where p > 1, l >= 0 is a concave or slowly varying function.
引用
收藏
页码:1437 / 1444
页数:8
相关论文
共 50 条
  • [31] Moments and large deviations for supercritical branching processes with immigration in random environments
    Chunmao Huang
    Chen Wang
    Xiaoqiang Wang
    Acta Mathematica Scientia, 2022, 42 : 49 - 72
  • [32] SUPERCRITICAL MARKOV BRANCHING PROCESS WITH RANDOM INITIAL CONDITION
    Mayster, Penka
    Tchorbadjieff, Assen
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (01): : 21 - 28
  • [33] Exact convergence rate in central limit theorem for a supercritical branching process with immigration in a random environment
    Li, Yingqiu
    Tang, Xinping
    Wang, Hesong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (23) : 8412 - 8427
  • [34] On the Inequalities for Moments of Branching Random Processes
    Khusanbayev Y.
    Kudratov K.
    Journal of Mathematical Sciences, 2024, 278 (4) : 703 - 711
  • [35] Asymptotic properties of supercritical branching processes in random environments
    Yingqiu Li
    Quansheng Liu
    Zhiqiang Gao
    Hesong Wang
    Frontiers of Mathematics in China, 2014, 9 : 737 - 751
  • [36] A note on multitype branching process with bounded immigration in random environment
    Wang, Hua Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (06) : 1095 - 1110
  • [37] Precise large deviation estimates for branching process in random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1669 - 1700
  • [38] Asymptotic properties of supercritical branching processes in random environments
    Li, Yingqiu
    Liu, Quansheng
    Gao, Zhiqiang
    Wang, Hesong
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (04) : 737 - 751
  • [39] Lower large deviations for supercritical branching processes in random environment
    Vincent Bansaye
    Christian Böinghoff
    Proceedings of the Steklov Institute of Mathematics, 2013, 282 : 15 - 34
  • [40] Small positive values for supercritical branching processes in random environment
    Bansaye, Vincent
    Boeinghoff, Christian
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (03): : 770 - 805