Multiple periodic solutions for impulsive Gause-type ratio-dependent predator-prey systems with non-monotonic numerical responses

被引:7
作者
Dai, Binxiang [1 ]
Li, Ying [1 ]
Luo, Zhenguo [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Ratio-dependent; Impulsive predator-prey system; Non-monotonic functional response; Multiple periodic solutions; Continuation theorem; GLOBAL QUALITATIVE-ANALYSIS; FUNCTIONAL-RESPONSE; MODEL; BIFURCATIONS; DELAY;
D O I
10.1016/j.amc.2011.02.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the existence of multiple periodic solutions for impulsive Gause-type ratio-dependent predator-prey systems with non-monotonic numerical responses and time delays. Some sufficient conditions are derived by using the continuation theorem of coincidence degree theory and analysis technique. As corollaries, some applications are listed. In particular, the presented criteria improve and extend many previous results in the literature. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7478 / 7487
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[2]   VARIATION IN PLANKTON DENSITIES AMONG LAKES - A CASE FOR RATIO-DEPENDENT PREDATION MODELS [J].
ARDITI, R ;
GINZBURG, LR ;
AKCAKAYA, HR .
AMERICAN NATURALIST, 1991, 138 (05) :1287-1296
[3]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
[4]  
Ballinger G., 2000, APPL ANAL, V74, P71, DOI [DOI 10.1080/00036810008840804, 10.1080 /00036810008840804]
[5]   Multiple periodic solutions of delayed predator-prey systems with type IV functional responses [J].
Chen, YM .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (01) :45-53
[6]   Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse [J].
Dai, Binxiang ;
Su, Hua ;
Hu, Dianwang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :126-134
[7]   Periodic solutions for a semi-ratio-dependent predator-prey system with nonmonotonic functional response and time delay [J].
Ding, Xiaohua ;
Lu, Chun ;
Liu, Mingzhu .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) :762-775
[8]   Multiple periodic solutions in delayed Gause-type ratio-dependent predator-prey systems with non-monotonic numerical responses [J].
Ding, Xiaoquan ;
Jiang, Jifa .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) :1323-1331
[9]   Periodic solutions of delayed ratio-dependent predator-prey models with monotonic or nonmonotonic functional responses [J].
Fan, YH ;
Li, WT ;
Wang, LL .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2004, 5 (02) :247-263
[10]   Periodic solutions for predator-prey systems with Beddington-DeAngelis functional response on time scales [J].
Fazly, Mostafa ;
Hesaaraki, Mahmould .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) :1224-1235