Effect of annealing on mechanical and thermoelectric properties of a Al2CoCrFeNi high-entropy alloy

被引:28
作者
Shi, Yansong [1 ]
Shu, Qinghai [1 ]
Liaw, Peter K. [2 ]
Wang, Manman [1 ]
Teng, Chien-Lung [3 ]
Zou, Haoming [1 ]
Wen, Ping [4 ]
Xu, Bolin [4 ]
Wang, Dongxu [5 ]
Wang, Junfeng [1 ,6 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[3] Beijing Energet Pioneer Nat Sci Res Inst, Beijing 100081, Peoples R China
[4] State Owned Changhong Machinery Factory, Guilin 541002, Peoples R China
[5] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[6] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
High-entropy alloys; Annealing treatment; Microstructure evolution; Thermoelectric performance; Mechanical properties; SOLID-SOLUTION; PHASE-STABILITY; MICROSTRUCTURE; PERFORMANCE; EVOLUTION;
D O I
10.1016/j.matdes.2021.110313
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, a relatively light and high strength high entropy alloy thermoelectric material (Al2CoCrFeNi) for extreme service conditions was prepared by arc melting method. We find that the microstructure of the high entropy alloy (HEA) can be changed by annealing. By the tuning of proper annealing process, the microstructure evolution of the HEA can be adjusted to improve its mechanical and TE properties. Ultimate compressive strength can reach about 1.3 GPa after 1000 celcius annealing. Fine-grain and precipitation strengthening are the main reasons for the improvement of the mechanical properties. The conductivity, Seebeck coefficient and thermal conductivity are all affected by grain size, precipitates, structural complexity and so on. The present work provides an effective means of preparing and regulating microstructures for the energy-conversion technique, and also supplies a feasible reference for the future development of lightweight, high-strength HEA TE materials. (c) 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 51 条
[41]   Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys [J].
Wu, Y. D. ;
Cai, Y. H. ;
Chen, X. H. ;
Wang, T. ;
Si, J. J. ;
Wang, L. ;
Wang, Y. D. ;
Hui, X. D. .
MATERIALS & DESIGN, 2015, 83 :651-660
[42]   Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds [J].
Yamini, Sima Aminorroaya ;
Mitchell, David R. G. ;
Wang, Heng ;
Gibbs, Zachary M. ;
Pei, Yanzhong ;
Dou, Shi Xue ;
Snyder, G. Jeffrey .
AIP ADVANCES, 2015, 5 (05)
[43]   Nanoprecipitates induced dislocation pinning and multiplication strategy for designing high strength, plasticity and conductivity Cu alloys [J].
Yang, Huiya ;
Li, Keqiang ;
Bu, Yeqiang ;
Wu, Jinming ;
Fang, Youtong ;
Meng, Liang ;
Liu, Jiabin ;
Wang, Hongtao .
SCRIPTA MATERIALIA, 2021, 195 (195)
[44]   Prediction of high-entropy stabilized solid-solution in multi-component alloys [J].
Yang, X. ;
Zhang, Y. .
MATERIALS CHEMISTRY AND PHYSICS, 2012, 132 (2-3) :233-238
[45]   Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J].
Yeh, JW ;
Chen, SK ;
Lin, SJ ;
Gan, JY ;
Chin, TS ;
Shun, TT ;
Tsau, CH ;
Chang, SY .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (05) :299-303
[46]   A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures [J].
Youssef, Khaled M. ;
Zaddach, Alexander J. ;
Niu, Changning ;
Irving, Douglas L. ;
Koch, Carl C. .
MATERIALS RESEARCH LETTERS, 2015, 3 (02) :95-99
[47]   Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys [J].
Zhang, Chuan ;
Zhang, Fan ;
Diao, Haoyan ;
Gao, Michael C. ;
Tang, Zhi ;
Poplawsky, Jonathan D. ;
Liaw, Peter K. .
MATERIALS & DESIGN, 2016, 109 :425-433
[48]   The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state [J].
Zhang, L. J. ;
Fan, J. T. ;
Liu, D. J. ;
Zhang, M. D. ;
Yu, P. F. ;
Jing, Q. ;
Ma, M. Z. ;
Liaw, P. K. ;
Li, G. ;
Liu, R. P. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 745 :75-83
[49]   Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently [J].
Zhang, Qian ;
Sun, Yimeng ;
Xu, Wei ;
Zhu, Daoben .
ADVANCED MATERIALS, 2014, 26 (40) :6829-6851
[50]   The panoscopic approach to high performance thermoelectrics [J].
Zhao, Li-Dong ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :251-268