Building a parallel metabolism within the cell

被引:23
作者
Filipovska, Aleksandra [1 ,2 ,3 ]
Rackham, Oliver [1 ,2 ]
机构
[1] Univ Western Australia, Western Australia Inst Med Res, Perth, WA 6009, Australia
[2] Univ Western Australia, Med Res Ctr, Perth, WA 6009, Australia
[3] Univ Western Australia, Sch Biomed Biomol & Chem Sci, Crawley, WA, Australia
关键词
D O I
10.1021/cb700185e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the key aims of synthetic biology is to engineer artificial processes inside living cells. This requires components that interact in a predictable manner, both with each other and with existing cellular systems. However, the activity of many components is constrained by their interactions with other cellular molecules and often their roles in maintaining cell health. To escape this limitation, researchers are pursuing an "orthogonal" approach, building a parallel metabolism within the cell. Components of this parallel metabolism can be sourced from evolutionarily distant species or reengineered from existing cellular molecules by using rational design and directed evolution. These approaches allow the study of basic principles in cell biology and the engineering of cells that can function as environmental sensors, simple computers, and drug factories.
引用
收藏
页码:51 / 63
页数:13
相关论文
共 99 条
[1]   A comparative study of bioorthogonal reactions with azides [J].
Agard, Nicholas J. ;
Baskin, Jeremy M. ;
Prescher, Jennifer A. ;
Lo, Anderson ;
Bertozzi, Carolyn R. .
ACS CHEMICAL BIOLOGY, 2006, 1 (10) :644-648
[2]   The 'evolvability' of promiscuous protein functions [J].
Aharoni, A ;
Gaidukov, L ;
Khersonsky, O ;
Gould, SM ;
Roodveldt, C ;
Tawfik, DS .
NATURE GENETICS, 2005, 37 (01) :73-76
[3]   A semisynthetic epitope for kinase substrates [J].
Allen, Jasmina J. ;
Li, Manqing ;
Brinkworth, Craig S. ;
Paulson, Jennifer L. ;
Wang, Dan ;
Hubner, Anette ;
Chou, Wen-Hai ;
Davis, Roger J. ;
Burlingame, Alma L. ;
Messing, Robert O. ;
Katayama, Carol D. ;
Hedrick, Stephen M. ;
Shokat, Kevan M. .
NATURE METHODS, 2007, 4 (06) :511-516
[4]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[5]   Natural expansion of the genetic code [J].
Ambrogelly, Alexandre ;
Palioura, Sotiria ;
Soll, Dieter .
NATURE CHEMICAL BIOLOGY, 2007, 3 (01) :29-35
[6]   Computational redesign of endonuclease DNA binding and cleavage specificity [J].
Ashworth, Justin ;
Havranek, James J. ;
Duarte, Carlos M. ;
Sussman, Django ;
Monnat, Raymond J., Jr. ;
Stoddard, Barry L. ;
Baker, David .
NATURE, 2006, 441 (7093) :656-659
[7]   RIBOSOME-MEDIATED INCORPORATION OF A NONSTANDARD AMINO-ACID INTO A PEPTIDE THROUGH EXPANSION OF THE GENETIC-CODE [J].
BAIN, JD ;
SWITZER, C ;
CHAMBERLIN, AR ;
BENNER, SA .
NATURE, 1992, 356 (6369) :537-539
[8]   Molecular engineering approaches to peptide, polyketide and other antibiotics [J].
Baltz, Richard H. .
NATURE BIOTECHNOLOGY, 2006, 24 (12) :1533-1540
[9]   Programmable ligand-controlled riboregulators of eukaryotic gene expression [J].
Bayer, TS ;
Smolke, CD .
NATURE BIOTECHNOLOGY, 2005, 23 (03) :337-343
[10]   Engineering stability in gene networks by autoregulation [J].
Becskei, A ;
Serrano, L .
NATURE, 2000, 405 (6786) :590-593