Li Diffusivity and Phase Change in LiFe0.5Mn0.5PO4: A Comparative Study using Galvanostatic Intermittent Titration and Cyclic Voltammetry

被引:51
作者
Hashambhoy, A. M. [1 ]
Whitacre, J. F. [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
RECHARGEABLE LITHIUM BATTERIES; CATHODE MATERIAL; LOCAL-STRUCTURE; LIMPO4; M; LIFEPO4; MN; FE; NI; CO; LI-X(MNYFE1-Y)PO4;
D O I
10.1149/1.3545972
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium transport and phase evolution in the LiFe0.5Mn0.5PO4 system was examined using both cyclic voltammetry and galvanostatic intermittent titration. Hydrothermal or sol-gel processing was used to synthesize LiFe0.5Mn0.5PO4, LiFePO4, and LiMnPO4, and electrodes made with LiFe0.5Mn0.5PO4 or a 1:1 mass ratio of LiFePO4 and LiMnPO4 were produced and studied. Cyclic voltammetry was used to distinguish single-and dual-phase redox reaction regimes and also accurately measure ionic diffusivity in the dual redox couple LiFe0.5Mn0.5PO4 system. Ionic diffusivity values extracted from galvanostatic intermittent titration data were compared to those determined via cyclic voltammetry. These results are discussed in the context of theories that explain phase transitions and diffusion in this class of materials. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3545972]
引用
收藏
页码:A390 / A395
页数:6
相关论文
共 27 条
[1]  
Bard AllenJ., 2001, Fundamentals and applications, V2nd
[2]   Synchrotron diffraction study of lithium extraction from LiMn0.6Fe0.4PO4 [J].
Bramnik, NN ;
Bramnik, KG ;
Nikolowski, K ;
Hinterstein, M ;
Baehtz, C ;
Ehrenberg, H .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (08) :A379-A381
[3]   Local structure in the Li-ion battery cathode material Lix(MnyFe1-y)PO4 for 0 < x ≤ 1 and y=0.0, 0.5 and 1.0 [J].
Burba, Christopher A. ;
Frech, Roger .
JOURNAL OF POWER SOURCES, 2007, 172 (02) :870-876
[4]   Vibrational spectroscopic investigation of structurally-related LiFePO4, NaFePO4, and FePO4 compounds [J].
Burba, Christopher M. ;
Frech, Roger .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2006, 65 (01) :44-50
[5]   Kinetic study on low-temperature synthesis of LiFePO4 via solid-state reaction [J].
Chang, Hao-Hsun ;
Chang, Chun-Chih ;
Wu, Hung-Chun ;
Guo, Zheng-Zhao ;
Yang, Mo-Hua ;
Chiang, Yung-Ping ;
Sheu, Hwo-Shuenn ;
Wu, Nae-Lih .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :550-556
[6]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[7]   Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni):: Insights into defect association, transport mechanisms, and doping behavior [J].
Fisher, Craig A. J. ;
Prieto, Veluz M. Hart ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2008, 20 (18) :5907-5915
[8]   Fabrication of olivine-type LiMnxFe1-xPO4 crystals via the glass-ceramic route and their lithium ion battery performance [J].
Honma, Tsuyoshi ;
Nagamine, Kenta ;
Komatsu, Takayuki .
CERAMICS INTERNATIONAL, 2010, 36 (03) :1137-1141
[9]   Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material [J].
Islam, MS ;
Driscoll, DJ ;
Fisher, CAJ ;
Slater, PR .
CHEMISTRY OF MATERIALS, 2005, 17 (20) :5085-5092
[10]   DTA, FTIR and impedance spectroscopy studies on lithium-iron-phosphate glasses with olivine-like local structure [J].
Jozwiak, P. ;
Garbarczyk, J. E. ;
Wasiucionek, M. ;
Gorzkowska, I. ;
Gendron, F. ;
Mauger, A. ;
Julien, C. M. .
SOLID STATE IONICS, 2008, 179 (1-6) :46-50