Common Fixed-Points Technique for the Existence of a Solution to Fractional Integro-Differential Equations via Orthogonal Branciari Metric Spaces

被引:8
作者
Gnanaprakasam, Arul Joseph [1 ]
Nallaselli, Gunasekaran [1 ]
Ul Haq, Absar [2 ]
Mani, Gunaseelan [3 ]
Baloch, Imran Abbas [4 ,5 ]
Nonlaopon, Kamsing [6 ]
机构
[1] SRM Inst Sci & Technol, Fac Engn & Technol, Coll Engn & Technol, Dept Math, Kattankulathur 603203, India
[2] Univ Engn & Technol, Dept Nat Sci & Humanities, Narowal Campus, Lahore 54000, Pakistan
[3] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamil Nadu, India
[4] Govt Grad Coll Boys Gulberg, Higher Educ Dept, Punjab 54660, Pakistan
[5] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore 54600, Pakistan
[6] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 09期
关键词
orthogonal set; orthogonal sequence; orthogonal continuous; orthogonal Branicari metric space; orthogonal triangular alpha-orbital admissible; POSITIVE SOLUTION; THEOREMS; SETS;
D O I
10.3390/sym14091859
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The idea of symmetry is a built-in feature of the metric function. In this paper, we investigate the existence and uniqueness of a fixed point of certain contraction via orthogonal triangular alpha-orbital admissible mapping in the context of orthogonal complete Branciari metric spaces endowed with a transitive binary relation. Our results generalize and extend some pioneering results in the literature. Furthermore, the existence criteria of the solutions to fractional integro-differential equations are established to demonstrate the applicability of our results.
引用
收藏
页数:23
相关论文
共 34 条
[11]   SOME FIXED POINT THEOREMS ON ORTHOGONAL METRIC SPACES VIA EXTENSIONS OF ORTHOGONAL CONTRACTIONS [J].
Bilgili Gungor, Nurcan .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (02) :481-489
[12]  
Branciari A, 2000, PUBL MATH-DEBRECEN, V57, P31
[13]  
Eshaghi Gordji M., 2017, J Linear Topol Algebra, V6, P251
[14]   Solving a nonlinear integral equation via orthogonal metric space [J].
Gnanaprakasam, Arul Joseph ;
Mani, Gunaseelan ;
Lee, Jung Rye ;
Park, Choonkil .
AIMS MATHEMATICS, 2022, 7 (01) :1198-1210
[15]   ON ORTHOGONAL SETS AND BANACH FIXED POINT THEOREM [J].
Gordji, Madjid Eshaghi ;
Rameani, Maryam ;
De La Sen, Manuel ;
Cho, Yeol Je .
FIXED POINT THEORY, 2017, 18 (02) :569-578
[16]   Further generalizations of the Banach contraction principle [J].
Jleli, Mohamed ;
Karapinar, Erdal ;
Samet, Bessem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, :1-9
[17]   A new generalization of the Banach contraction principle [J].
Jleli, Mohamed ;
Samet, Bessem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[18]  
Karapinar E., 2015, Abstr. Appl. Anal., V2015, DOI [10.1155/2015/141409, DOI 10.1155/2015/141409]
[19]  
Karapinar E, 2015, CARPATHIAN J MATH, V31, P339
[20]   On α-ψ-Meir-Keeler contractive mappings [J].
Karapinar, Erdal ;
Kumam, Poom ;
Salimi, Peyman .
FIXED POINT THEORY AND APPLICATIONS, 2013,