The Influence of Different Ultrasonic Machines on Radiomics Models in Prediction Lymph Node Metastasis for Patients with Cervical Cancer

被引:2
作者
Yi, Jinling [1 ]
Lei, Xiyao [1 ]
Zhang, Lei [1 ]
Zheng, Qiao [1 ]
Jin, Juebin [2 ]
Xie, Congying [1 ,3 ]
Jin, Xiance [1 ,4 ]
Ai, Yao [1 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 1, Radiotherapy Ctr, Wenzhou, Peoples R China
[2] Wenzhou Med Univ, Affiliated Hosp 1, Dept Med Engn, Wenzhou, Peoples R China
[3] Wenzhou Med Univ, Affiliated Hosp 2, Dept Radiat & Med Oncol, Wenzhou, Peoples R China
[4] Wenzhou Med Univ, Sch Basic Med Sci, Wenzhou, Peoples R China
关键词
ultrasonic machine; ultrasound image; radiomics; reproducibility; lymph node metastasis; FEATURES; CT; RECONSTRUCTION; TOMOGRAPHY; IMAGES; IMPACT; MRI;
D O I
10.1177/15330338221118412
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective To investigate the effects of different ultrasonic machines on the performance of radiomics models using ultrasound (US) images in the prediction of lymph node metastasis (LNM) for patients with cervical cancer (CC) preoperatively. Methods A total of 536 CC patients with confirmed histological characteristics and lymph node status after radical hysterectomy and pelvic lymphadenectomy were enrolled. Radiomics features were extracted and selected with US images acquired with ATL HDI5000, Voluson E8, MyLab classC, ACUSON S2000, and HI VISION Preirus to build radiomics models for LNM prediction using support vector machine (SVM) and logistic regression, respectively. Results There were 148 patients (training vs validation: 102:46) scanned in machine HDI5000, 75 patients (53:22) in machine Voluson E8, 100 patients (69:31) in machine MyLab classC, 110 patients (76:34) in machine ACUSON S2000, and 103 patients (73:30) in machine HI VISION Preirus, respectively. Few radiomics features were reproducible among different machines. The area under the curves (AUCs) ranged from 0.75 to 0.86, 0.73 to 0.86 in the training cohorts, and from 0.71 to 0.82, 0.70 to 0.80 in the validation cohorts for SVM and logistic regression models, respectively. The highest difference in AUCs for different machines reaches 17.8% and 15.5% in the training and validation cohorts, respectively. Conclusions The performance of radiomics model is dependent on the type of scanner. The problem of scanner dependency on radiomics features should be considered, and their effects should be minimized in future studies for US images.
引用
收藏
页数:11
相关论文
共 38 条
[11]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[12]   Radiomics Analysis on Ultrasound for Prediction of Biologic Behavior in Breast Invasive Ductal Carcinoma [J].
Guo, Yi ;
Hu, Yuzhou ;
Qiao, Mengyun ;
Wang, Yuanyuan ;
Yu, Jinhua ;
Li, Jiawei ;
Chang, Cai .
CLINICAL BREAST CANCER, 2018, 18 (03) :E335-E344
[13]   Artificial intelligence in radiology [J].
Hosny, Ahmed ;
Parmar, Chintan ;
Quackenbush, John ;
Schwartz, Lawrence H. ;
Aerts, Hugo J. W. L. .
NATURE REVIEWS CANCER, 2018, 18 (08) :500-510
[14]   Radiogenomic Analysis of Oncological Data: A Technical Survey [J].
Incoronato, Mariarosaria ;
Aiello, Marco ;
Infante, Teresa ;
Cavaliere, Carlo ;
Grimaldi, Anna Maria ;
Mirabelli, Peppino ;
Monti, Serena ;
Salvatore, Marco .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (04)
[15]   Noninvasive prediction of lymph node status for patients with early-stage cervical cancer based on radiomics features from ultrasound images [J].
Jin, Xiance ;
Ai, Yao ;
Zhang, Ji ;
Zhu, Haiyan ;
Jin, Juebin ;
Teng, Yinyan ;
Chen, Bin ;
Xie, Congying .
EUROPEAN RADIOLOGY, 2020, 30 (07) :4117-4124
[16]   Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer [J].
Kan, Yangyang ;
Dong, Di ;
Zhang, Yuchen ;
Jiang, Wenyan ;
Zhao, Nannan ;
Han, Lu ;
Fang, Mengjie ;
Zang, Yali ;
Hu, Chaoen ;
Tian, Jie ;
Li, Chunming ;
Luo, Yahong .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (01) :304-310
[17]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[18]   External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma [J].
Leijenaar, Ralph T. H. ;
Carvalho, Sara ;
Hoebers, Frank J. P. ;
Aerts, Hugo J. W. L. ;
Van Elmpt, Wouter J. C. ;
Huang, Shao Hui ;
Chan, Biu ;
Waldron, John N. ;
O'Sullivan, Brian ;
Lambin, Philippe .
ACTA ONCOLOGICA, 2015, 54 (09) :1423-1429
[19]   Value of [18F]FDG PET radiomic features and VEGF expression in predicting pelvic lymphatic metastasis and their potential relationship in early-stage cervical squamous cell carcinoma [J].
Li Kexin ;
Sun Hongzan ;
Lu Zaiming ;
Xin Jun ;
Zhang Le ;
Guo Yan ;
Guo Qiyong .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 106 :160-166
[20]   Reproducibility of radiomics features from ultrasound images: influence of image acquisition and processing [J].
Li, Ming-De ;
Cheng, Mei-Qing ;
Chen, Li-Da ;
Hu, Hang-Tong ;
Zhang, Jian-Chao ;
Ruan, Si-Min ;
Huang, Hui ;
Kuang, Ming ;
Lu, Ming-De ;
Li, Wei ;
Wang, Wei .
EUROPEAN RADIOLOGY, 2022, 32 (09) :5843-5851