Estimation of equivalent internal-resistance of PEM fuel cell using artificial neural networks

被引:3
|
作者
Li Wei [1 ]
Zhu Xin-jian [1 ]
Mo Zhi-jun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Fuel Cell Res Inst, Dept Automat, Shanghai 200030, Peoples R China
来源
关键词
polymer electrolyte membrane fuel cell(PEMFC); equivalent internal-resistance; radial basis function; neural networks;
D O I
10.1007/s11771-007-0132-y
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
A practical method of estimation for the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack was adopted based on radial basis function (RBF) neural networks. In the training process, k-means clustering algorithm was applied to select the network centers of the input training data. Furthermore, an equivalent electrical-circuit model with this internal-resistance was developed for investigation on the stack. Finally using the neural networks model of the equivalent resistance in the PEMFC stack, the simulation results of the estimation of equivalent internal-resistance of PEMFC were presented. The results show that this electrical PEMFC model is effective and is suitable for the study of control scheme, fault detection and the engineering analysis of electrical circuits.
引用
收藏
页码:690 / 695
页数:6
相关论文
共 50 条
  • [41] Solar radiation estimation using artificial neural networks
    Dorvlo, ASS
    Jervase, JA
    Al-Lawati, A
    APPLIED ENERGY, 2002, 71 (04) : 307 - 319
  • [42] Wireless User Estimation Using Artificial Neural Networks
    Abinoja, Daniel
    Bedruz, Rhen Anjerome
    Jovellanos, Kevin Loo
    Bandala, Argel
    2015 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY,COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2015, : 475 - +
  • [43] Estimation of daily evaporation using Artificial Neural Networks
    Dogan, Emrah
    Isik, Sabahattin
    Sandalci, Mehmet
    TEKNIK DERGI, 2007, 18 (02): : 4119 - 4131
  • [44] Monthly Runoff Estimation Using Artificial Neural Networks
    Yazdani, M. R.
    Saghafian, B.
    Mahdian, M. H.
    Soltani, S.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2009, 11 (03): : 355 - 362
  • [45] Estimation of conditional quantiles using artificial neural networks
    Zhang, JT
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (06): : 569 - 574
  • [46] Practical inferential estimation using artificial neural networks
    Tham, MT
    Montague, GA
    Glassey, J
    Willis, MJ
    MEASUREMENT & CONTROL, 2002, 35 (01): : 5 - 9
  • [47] Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm
    Riad, Andrew J. J.
    Hasanien, Hany M. M.
    Turky, Rania A. A.
    Yakout, Ahmed H. H.
    SUSTAINABILITY, 2023, 15 (05)
  • [48] USING ARTIFICIAL NEURAL NETWORKS IN ESTIMATING WOOD RESISTANCE
    Miguel, Eder Pereira
    de Melo, Rafael Rodolfo
    Serenini Junior, Aercio
    Soares Del Menezzi, Cldudio Henrique
    MADERAS-CIENCIA Y TECNOLOGIA, 2018, 20 (04): : 531 - 542
  • [49] Using Artificial Neural Networks for Predicting Ship Fuel Consumption
    Nguyen, Van Giao
    Rajamohan, Sakthivel
    Rudzki, Krzysztof
    Kozak, Janusz
    Sharma, Prabhakar
    Pham, Nguyen Dang Khoa
    Nguyen, Phuoc Quy Phong
    Xuan, Phuong Nguyen
    POLISH MARITIME RESEARCH, 2023, 30 (02) : 39 - 60
  • [50] On-Board Fuel Identification using Artificial Neural Networks
    Mocanu, Florin
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2014, 7 (02) : 937 - 946