Lyapunov-type inequalities for a fractional p-Laplacian equation

被引:8
作者
Al Arifi, Nassir [1 ]
Altun, Ishak [2 ,3 ]
Jleli, Mohamed [4 ]
Lashin, Aref [5 ,6 ]
Samet, Bessem [4 ]
机构
[1] King Saud Univ, Dept Geol & Geophys, Coll Sci, Riyadh 11451, Saudi Arabia
[2] King Saud Univ, Coll Sci, Riyadh, Saudi Arabia
[3] Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey
[4] King Saud Univ, Dept Math, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
[5] King Saud Univ, Petr & Nat Gas Engn Dept, Coll Engn, Riyadh 11421, Saudi Arabia
[6] Benha Univ, Dept Geol, Fac Sci, Banha 13518, Egypt
关键词
Lyapunov-type inequality; fractional derivative; eigenvalues; turbulent flow; FLUID; MODEL; FLOW;
D O I
10.1186/s13660-016-1132-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present new Lyapunov-type inequalities for a fractional boundary value problem that models a turbulent flow in a porous medium. The obtained inequalities are used to obtain a lower bound for the eigenvalues of corresponding equations.
引用
收藏
页数:11
相关论文
共 24 条
[1]  
Aktas MF, 2013, ELECTRON J DIFFER EQ
[2]  
[Anonymous], 2006, Journal of the Electrochemical Society
[3]   Numerical-analytic investigation of the radially symmetric solutions for some nonlinear PDEs [J].
Bognár, G ;
Rontó, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (07) :983-991
[4]   Hartman-Wintner-type inequalities for a class of nonlocal fractional boundary value problems [J].
Cabrera, I. ;
Sadarangani, K. ;
Samet, B. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) :129-136
[5]   ON LYAPUNOV-TYPE INEQUALITY FOR A CLASS OF NONLINEAR SYSTEMS [J].
Cakmak, Devrim .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (01) :101-108
[6]   ON A NONLINEAR PARABOLIC PROBLEM ARISING IN SOME MODELS RELATED TO TURBULENT FLOWS [J].
DIAZ, JI ;
DETHELIN, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) :1085-1111
[7]   On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function [J].
Ferreira, Rui A. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) :1058-1063
[8]   A Lyapunov-type inequality for a fractional boundary value problem [J].
Ferreira, Rui A. C. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) :978-984
[9]   Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology [J].
Glowinski, R ;
Rappaz, J .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01) :175-186
[10]  
Hartman P., 1951, Am. J. Math, V73, P885