Cell death mechanisms in Leishmania amazonensis triggered by methylene blue-mediated antiparasitic photodynamic therapy

被引:31
作者
Aureliano, Debora P. [1 ]
Lauletta Lindoso, Jose Angelo [2 ,3 ,4 ]
de Castro Soares, Sandra Regina [4 ]
Hirata Takakura, Cleusa Fumika [5 ]
Pereira, Thiago Martini [6 ]
Ribeiro, Martha Simoes [1 ]
机构
[1] IPEN CNEN SP, Ctr Lasers & Applicat, Sao Paulo, SP, Brazil
[2] Univ Sao Paulo, Fac Med HCFMUSP, Hosp Clin, Lab Invest Med LIM 38, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, Inst Med Trop, Sao Paulo, SP, Brazil
[4] Inst Infectol Emilio Ribas SES SP, Sao Paulo, SP, Brazil
[5] Univ Sao Paulo, Fac Med FMUSP, Sao Paulo, SP, Brazil
[6] Univ Fed Sao Paulo UNIFESP, Dept Ciencia & Tecnol, Sao Jose Dos Campos, SP, Brazil
关键词
Apoptosis; Flow cytometry; Membrane fluidity; Membrane potential; Microscopy; Photodynamic therapy; Cutaneous leishmaniasis; VITRO; PROMASTIGOTES; EFFICIENCY; PHOTOSENSITIZER; DERIVATIVES; APOPTOSIS;
D O I
10.1016/j.pdpdt.2018.05.005
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Antiparasitic photodynamic therapy (ApPDT) is an emerging approach to manage cutaneous leishmaniasis (CL) since no side effects, contraindications and parasite resistance have been reported. In addition, methylene blue (MB) is a suitable photosensitizer to mediate ApPDT on CL. In this study we aimed to look for the best parameters to eradicate Leishmania amazonensis and investigated the cell death pathways involved in MB-mediated ApPDT. MB uptake by parasites was determined using different MB concentrations (50, 100, 250 and 500 mu M) and incubation times (10, 30 and 60 min). L. amazonensis promastigotes were cultured and submitted to ApPDT using different concentrations of MB (50, 100 and 250 mu M) combined to a red LED emitting at 645 +/- 10 nm. The pre-irradiation time was 10 min. Two optical powers (100 mW and 250 mW) were tested and cells were exposed to 60 and 300 s of MB-mediated ApPDT delivering energies of 6, 15, 30 and 75 J and fluences of 21.2, 53.1, 106.2 and 265.4 J/cm(2), respectively. Following ApPDT, cells were prepared for flow cytometry and transmission electron microscopy to unravel the mechanisms of cell death. Our results showed the lowest MB concentration (50 mu M) and the lowest optical power (100 mW) promoted the highest percentage of cell decrease. ApPDT caused alterations on cell membrane permeability as well depolarization of mitochondrial membrane potential. We also observed ultrastructural changes of the parasites such as cell shrinkage, intense vacuolization of the cytoplasm, enlargement of mitochondrion-kinetoplast complex, and small blebs on parasite flagella and cell membrane after MB-mediated ApPDT. Taken together, our findings ratify that ApPDT parameters play a pivotal role in cell susceptibility and suggest that apoptosis is involved in parasite death regardless MB-mediated ApPDT protocol.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 34 条
[1]  
Aureliano D. P., LEISHMANIASIS TRENDS
[2]   Membrane Damage Efficiency of Phenothiazinium Photosensitizers [J].
Bacellar, Isabel O. L. ;
Pavani, Christiane ;
Sales, Elisa M. ;
Itri, Rosangela ;
Wainwright, Mark ;
Baptista, Mauricio S. .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2014, 90 (04) :801-813
[3]   Cutaneous and mucocutaneous leishmaniasis [J].
David, Consuelo V. ;
Craft, Noah .
DERMATOLOGIC THERAPY, 2009, 22 (06) :491-502
[4]   Tamoxifen Induces Apoptosis of Leishmania major Promastigotes in Vitro [J].
Doroodgar, Masoud ;
Delavari, Mahdi ;
Doroodgar, Moein ;
Abbasi, Ali ;
Taherian, Ali Akbar ;
Doroodgar, Abbas .
KOREAN JOURNAL OF PARASITOLOGY, 2016, 54 (01) :9-14
[5]   Death of a trypanosome: a selfish altruism [J].
Duszenko, Michael ;
Figarella, Katherine ;
Macleod, Ewan T. ;
Welburn, Susan C. .
TRENDS IN PARASITOLOGY, 2006, 22 (11) :536-542
[6]   Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes [J].
Galluzzi, L. ;
Aaronson, S. A. ;
Abrams, J. ;
Alnemri, E. S. ;
Andrews, D. W. ;
Baehrecke, E. H. ;
Bazan, N. G. ;
Blagosklonny, M. V. ;
Blomgren, K. ;
Borner, C. ;
Bredesen, D. E. ;
Brenner, C. ;
Castedo, M. ;
Cidlowski, J. A. ;
Ciechanover, A. ;
Cohen, G. M. ;
De Laurenzi, V. ;
De Maria, R. ;
Deshmukh, M. ;
Dynlacht, B. D. ;
El-Deiry, W. S. ;
Flavell, R. A. ;
Fulda, S. ;
Garrido, C. ;
Golstein, P. ;
Gougeon, M-L ;
Green, D. R. ;
Gronemeyer, H. ;
Hajnoczky, G. ;
Hardwick, J. M. ;
Hengartner, M. O. ;
Ichijo, H. ;
Jaattela, M. ;
Kepp, O. ;
Kimchi, A. ;
Klionsky, D. J. ;
Knight, R. A. ;
Kornbluth, S. ;
Kumar, S. ;
Levine, B. ;
Lipton, S. A. ;
Lugli, E. ;
Madeo, F. ;
Malorni, W. ;
Marine, J-C W. ;
Martin, S. J. ;
Medema, J. P. ;
Mehlen, P. ;
Melino, G. ;
Moll, U. M. .
CELL DEATH AND DIFFERENTIATION, 2009, 16 (08) :1093-1107
[7]   Cutaneous and Mucocutaneous Leishmaniasis [J].
Goto, Hiro ;
Lauletta Lindoso, Jose Angelo .
INFECTIOUS DISEASE CLINICS OF NORTH AMERICA, 2012, 26 (02) :293-+
[8]  
Grivicich I., 2007, Revista Brasileira de Cancerologia, V53, P335
[9]   Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes [J].
Hamblin, Michael R. .
CURRENT OPINION IN MICROBIOLOGY, 2016, 33 :67-73
[10]   Cancer Tissue Classification, Associated Therapeutic Implications and PDT as an Alternative [J].
Horne, Tamarisk K. ;
Cronje, Marianne J. .
ANTICANCER RESEARCH, 2017, 37 (06) :2785-2807