NUMERICAL RADIUS INEQUALITIES FOR OPERATOR MATRICES

被引:29
作者
Sahoo, Satyajit [1 ]
Das, Namita [1 ]
Mishra, Debasisha [2 ]
机构
[1] Utkal Univ, PG Dept Math, Bhubaneswar 751004, India
[2] Natl Inst Technol Raipur, Dept Math, Raipur 492010, Madhya Pradesh, India
来源
ADVANCES IN OPERATOR THEORY | 2019年 / 4卷 / 01期
关键词
Aluthge transform; spectral radius; numerical radius; operator matrix; polar decomposition; NORM;
D O I
10.15352/aot.1804-1359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several numerical radius inequalities for operator matrices are proved by generalizing earlier inequalities. In particular, the following inequalities are obtained: if n is even, 2w(T) <= max{parallel to A(1)parallel to,parallel to A(2)parallel to,. . . , parallel to A(n)parallel to} + 1/2 Sigma(n-1)(k=0)parallel to vertical bar A(n-k)vertical bar(t)vertical bar A(k+1)*vertical bar(1-t)parallel to, and if n is odd, 2w(T) <= max{parallel to A(1)parallel to,parallel to A(2)parallel to, . . . ,parallel to A(n)parallel to}+w((A) over tilde ((n+1/2)t))+1/2 Sigma(n-1)(k=0)parallel to vertical bar A(n-k)vertical bar(t)vertical bar A(k+1)*vertical bar(1-t)vertical bar, for all t is an element of [0, 1], A(i)'s are bounded linear operators on the Hilbert space H, and T is off diagonal matrix with entries A(1), . . . , A(n).
引用
收藏
页码:197 / 214
页数:18
相关论文
共 15 条