Variation in Predictive Ability of Common Genetic Variants by Established Strata The Example of Breast Cancer and Age

被引:10
作者
Aschard, Hugues [1 ]
Zaitlen, Noah [2 ]
Lindstrom, Sara [1 ]
Kraft, Peter [1 ,3 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Program Genet Epidemiol & Stat Genet, Boston, MA 02115 USA
[2] Univ Calif San Francisco, Dept Med, San Francisco, CA USA
[3] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
GENOME-WIDE ASSOCIATION; RISK-PREDICTION; MODELS; PERFORMANCE;
D O I
10.1097/EDE.0000000000000195
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: Recent studies of breast cancer and common genetic markers have failed to identify pervasive gene-gene and gene-environment interactions. Theoretical considerations also suggest that the contribution of modest interactions to risk discrimination in the general population is likely small. However, the clinical utility of common breast cancer risk markers may nonetheless differ across strata defined by known risk factors, such as age. Methods: We examined the age-specific per-allele odds ratios of 15 common single nucleotide polymorphisms (SNPs) found to be associated with breast cancer in 1142 breast cancer cases and 1145 controls from the Nurses' Health Study. We calculated the age-specific discriminatory ability of risk models incorporating these SNPs. We then conducted simulation studies to explore how hypothetical underlying genetic models may fit the observed results. Results: Although all individual SNP-by-age interactions were modest, we found a negative interaction effect between age and a genetic risk score defined by the sum of risk alleles (P = 0.04). We also observed a decrease in discriminatory ability, as measured by the area under the curve (AUC), of the SNPs with age (P = 0.04). Simulation studies revealed models where the AUC can differ by strata defined by a risk factor without the presence of interactions; however, our study suggests that the observed differences in AUC are explained by the age-specific effect of the SNPs. Conclusion: The identification of risk factors that alter the effect of multiple genetic variants can help to explain the genetic architecture of multifactorial diseases and identify subgroups of persons who may benefit from genetic screening.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 19 条
  • [1] Challenges and opportunities in genome-wide environmental interaction (GWEI) studies
    Aschard, Hugues
    Lutz, Sharon
    Maus, Barbel
    Duell, Eric J.
    Fingerlin, Tasha E.
    Chatterjee, Nilanjan
    Kraft, Peter
    Van Steen, Kristel
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1591 - 1613
  • [2] Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases
    Aschard, Hugues
    Chen, Jinbo
    Cornelis, Marilyn C.
    Chibnik, Lori B.
    Karlson, Elizabeth W.
    Kraft, Peter
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 90 (06) : 962 - 972
  • [3] Joint Effects of Common Genetic Variants on the Risk for Type 2 Diabetes in U. S. Men and Women of European Ancestry
    Cornelis, Marilyn C.
    Qi, Lu
    Zhang, Cuilin
    Kraft, Peter
    Manson, JoAnn
    Cai, Tianxi
    Hunter, David J.
    Hu, Frank B.
    [J]. ANNALS OF INTERNAL MEDICINE, 2009, 150 (08) : 541 - W98
  • [4] Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk
    Gail, Mitchell H.
    [J]. JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2008, 100 (14) : 1037 - 1041
  • [5] Genome-wide association studies identify four ER negative-specific breast cancer risk loci
    Garcia-Closas, Montserrat
    Couch, Fergus J.
    Lindstrom, Sara
    Michailidouo, Kyriaki
    Schmidt, Marjanka K.
    Brook, Mark N.
    Orr, Nick
    Rhie, Suhn Kyong
    Riboli, Elio
    Feigelson, Heather S.
    Le Marchand, Loic
    Buring, Julie E.
    Eccles, Diana
    Miron, Penelope
    Fasching, Peter A.
    Brauch, Hiltrud
    Chang-Claude, Jenny
    Carpenter, Jane
    Godwin, Andrew K.
    Nevanlinna, Heli
    Giles, Graham G.
    Cox, Angela
    Hopper, John L.
    Bolla, Manjeet K.
    Wang, Qin
    Dennis, Joe
    Dicks, Ed
    Howat, Will J.
    Schoof, Nils
    Bojesen, Stig E.
    Lambrechts, Diether
    Broeks, Annegien
    Andrulis, Irene L.
    Guenel, Pascal
    Burwinkel, Barbara
    Sawyer, Elinor J.
    Hollestelle, Antoinette
    Fletcher, Olivia
    Winqvist, Robert
    Brenner, Hermann
    Mannermaa, Arto
    Hamann, Ute
    Meindl, Alfons
    Lindblom, Annika
    Zheng, Wei
    Devillee, Peter
    Goldberg, Mark S.
    Lubinski, Jan
    Kristensen, Vessela
    Swerdlow, Anthony
    [J]. NATURE GENETICS, 2013, 45 (04) : 392 - 398
  • [6] The International HapMap Project
    Gibbs, RA
    Belmont, JW
    Hardenbol, P
    Willis, TD
    Yu, FL
    Yang, HM
    Ch'ang, LY
    Huang, W
    Liu, B
    Shen, Y
    Tam, PKH
    Tsui, LC
    Waye, MMY
    Wong, JTF
    Zeng, CQ
    Zhang, QR
    Chee, MS
    Galver, LM
    Kruglyak, S
    Murray, SS
    Oliphant, AR
    Montpetit, A
    Hudson, TJ
    Chagnon, F
    Ferretti, V
    Leboeuf, M
    Phillips, MS
    Verner, A
    Kwok, PY
    Duan, SH
    Lind, DL
    Miller, RD
    Rice, JP
    Saccone, NL
    Taillon-Miller, P
    Xiao, M
    Nakamura, Y
    Sekine, A
    Sorimachi, K
    Tanaka, T
    Tanaka, Y
    Tsunoda, T
    Yoshino, E
    Bentley, DR
    Deloukas, P
    Hunt, S
    Powell, D
    Altshuler, D
    Gabriel, SB
    Qiu, RZ
    [J]. NATURE, 2003, 426 (6968) : 789 - 796
  • [7] Interactions in Epidemiology: Relevance, Identification, and Estimation
    Greenland, Sander
    [J]. EPIDEMIOLOGY, 2009, 20 (01) : 14 - 17
  • [8] Using Principal Components of Genetic Variation for Robust and Powerful Detection of Gene-Gene Interactions in Case-Control and Case-Only Studies
    Hattacharjee, Samsiddhi
    Wang, Zhaoming
    Ciampa, Julia
    Kraft, Peter
    Chanock, Stephen
    Yu, Kai
    Chatterjee, Nilanjan
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (03) : 331 - 342
  • [9] Prediction of breast cancer risk by genetic risk factors, overall and by hormone receptor status
    Huesing, Anika
    Canzian, Federico
    Beckmann, Lars
    Garcia-Closas, Montserrat
    Diver, W. Ryan
    Thun, Michael J.
    Berg, Christine D.
    Hoover, Robert N.
    Ziegler, Regina G.
    Figueroa, Jonine D.
    Isaacs, Claudine
    Olsen, Anja
    Viallon, Vivian
    Boeing, Heiner
    Masala, Giovanna
    Trichopoulos, Dimitrios
    Peeters, Petra H. M.
    Lund, Eiliv
    Ardanaz, Eva
    Khaw, Kay-Tee
    Lenner, Per
    Kolonel, Laurence N.
    Stram, Daniel O.
    Le Marchand, Loic
    McCarty, Catherine A.
    Buring, Julie E.
    Lee, I-Min
    Zhang, Shumin
    Lindstroem, Sara
    Hankinson, Susan E.
    Riboli, Elio
    Hunter, David J.
    Henderson, Brian E.
    Chanock, Stephen J.
    Haiman, Christopher A.
    Kraft, Peter
    Kaaks, Rudolf
    [J]. JOURNAL OF MEDICAL GENETICS, 2012, 49 (09) : 601 - 608
  • [10] A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer
    Hunter, David J.
    Kraft, Peter
    Jacobs, Kevin B.
    Cox, David G.
    Yeager, Meredith
    Hankinson, Susan E.
    Wacholder, Sholom
    Wang, Zhaoming
    Welch, Robert
    Hutchinson, Amy
    Wang, Junwen
    Yu, Kai
    Chatterjee, Nilanjan
    Orr, Nick
    Willett, Walter C.
    Colditz, Graham A.
    Ziegler, Regina G.
    Berg, Christine D.
    Buys, Saundra S.
    McCarty, Catherine A.
    Feigelson, Heather Spencer
    Calle, Eugenia E.
    Thun, Michael J.
    Hayes, Richard B.
    Tucker, Margaret
    Gerhard, Daniela S.
    Fraumeni, Joseph F., Jr.
    Hoover, Robert N.
    Thomas, Gilles
    Chanock, Stephen J.
    [J]. NATURE GENETICS, 2007, 39 (07) : 870 - 874