Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications

被引:266
|
作者
Luo, Jianjun [1 ,2 ]
Wang, Zhong Lin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing Key Lab Micronano Energy & Sensor, CAS Ctr Excellence Nanosci, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
blue energy; contact electrification; energy harvesting; self-powered; triboelectric nanogenerators; WATER-WAVE ENERGY; CHARGING POWER TEXTILE; KEYSTROKE DYNAMICS; MECHANICAL ENERGY; BLUE ENERGY; HYBRID CELL; TRANSPARENT; PERFORMANCE; SYSTEM; DRIVEN;
D O I
10.1002/eom2.12059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element, which has to be driven by the energy storage unit, with a limited lifetime and environmental concerns. Given that the wide distribution and high mobility of these numerous sensors, the success of the IoTs and sustainable development of human society call for renewable distributed energy sources. Since triboelectrification effect is ubiquitous and universal in our living environment, the triboelectric nanogenerator (TENG) for mechanical energy harvesting and self-powered sensing developed by Wang and co-workers is one of the best choices for this energy for the new era. In this review, the recent progress of TENGs from fundamental theory to practical applications is systematically summarized. First, the mechanism of contact electrification, first principle theory, working principle, working modes, and figure of merits of the TENG are introduced. Furthermore, recent important progress in four major TENG applications, including micro/nano power sources, active self-powered sensors, large-scale blue energy, and direct high-voltage power sources are reviewed. In the end, some perspectives and challenges for the future development of TENG are also discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications
    Choi, Dongwhi
    Lee, Younghoon
    Lin, Zong-Hong
    Cho, Sumin
    Kim, Miso
    Ao, Chi Kit
    Soh, Siowling
    Sohn, Changwan
    Jeong, Chang Kyu
    Lee, Jeongwan
    Lee, Minbaek
    Lee, Seungah
    Ryu, Jungho
    Parashar, Parag
    Cho, Yujang
    Ahn, Jaewan
    Kim, Il-Doo
    Jiang, Feng
    Lee, Pooi See
    Khandelwal, Gaurav
    Kim, Sang-Jae
    Kim, Hyun Soo
    Song, Hyun-Cheol
    Kim, Minje
    Nah, Junghyo
    Kim, Wook
    Menge, Habtamu Gebeyehu
    Park, Yong Tae
    Xu, Wei
    Hao, Jianhua
    Park, Hyosik
    Lee, Ju-Hyuck
    Lee, Dong-Min
    Kim, Sang-Woo
    Park, Ji Young
    Zhang, Haixia
    Zi, Yunlong
    Guo, Ru
    Cheng, Jia
    Yang, Ze
    Xie, Yannan
    Lee, Sangmin
    Chung, Jihoon
    Oh, Il-Kwon
    Kim, Ji-Seok
    Cheng, Tinghai
    Gao, Qi
    Cheng, Gang
    Gu, Guangqin
    Shim, Minseob
    ACS NANO, 2023, 17 (12) : 11087 - 11219
  • [2] Recent progress of underwater triboelectric nanogenerators
    Wang, Siyuan
    Xu, Peng
    Xu, Minyi
    MRS BULLETIN, 2025, : 459 - 467
  • [3] Triboelectric nanogenerators: Fundamental physics and potential applications
    Linglin Zhou
    Di Liu
    Jie Wang
    Zhong Lin Wang
    Friction, 2020, 8 : 481 - 506
  • [4] Recent Progress of Advanced Materials for Triboelectric Nanogenerators
    Liu, Di
    Zhang, Jiayue
    Cui, Shengnan
    Zhou, Linglin
    Gao, Yikui
    Wang, Zhong Lin
    Wang, Jie
    SMALL METHODS, 2023, 7 (10)
  • [5] Triboelectric nanogenerators: Fundamental physics and potential applications
    Linglin ZHOU
    Di LIU
    Jie WANG
    Zhong Lin WANG
    Friction, 2020, 8 (03) : 481 - 506
  • [6] Triboelectric nanogenerators: Fundamental physics and potential applications
    Zhou, Linglin
    Liu, Di
    Wang, Jie
    Wang, Zhong Lin
    FRICTION, 2020, 8 (03) : 481 - 506
  • [7] Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application
    Sardo, Fatemeh Rahimi
    Rayegani, Arash
    Nazar, Ali Matin
    Balaghiinaloo, Mohammadali
    Saberian, Mohammadhossein
    Mohsan, Syed Agha Hassnain
    Alsharif, Mohammed H.
    Cho, Ho-Shin
    BIOSENSORS-BASEL, 2022, 12 (09):
  • [8] Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics
    Hinchet, Ronan
    Seung, Wanchul
    Kim, Sang-Woo
    CHEMSUSCHEM, 2015, 8 (14) : 2327 - 2344
  • [9] A Review on Triboelectric Nanogenerators, Recent Applications, and Challenges
    Davoudi, Mohammadmahdi
    An, Chi-Yoon
    Kim, Dae-Eun
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2024, 11 (04) : 1317 - 1340
  • [10] Recent Progress of Switching Power Management for Triboelectric Nanogenerators
    Zhou, Han
    Liu, Guoxu
    Zeng, Jianhua
    Dai, Yiming
    Zhou, Weilin
    Xiao, Chongyong
    Dang, Tianrui
    Yu, Wenbo
    Chen, Yuanfen
    Zhang, Chi
    SENSORS, 2022, 22 (04)