The Asymptotic Theory of Algebraic-Geometry Codes

被引:0
|
作者
Niederreiter, Harald [1 ]
机构
[1] Austrian Acad Sci, RICAM, A-4040 Linz, Austria
来源
FINITE FIELDS: THEORY AND APPLICATIONS | 2010年 / 518卷
关键词
Error-correcting codes; Gilbert-Varshamov bound; TVZ bound; global function fields; algebraic-geometry codes; FUNCTION-FIELDS; NONLINEAR CODES; CURVES; IMPROVEMENTS; POINTS; BOUNDS; TOWER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the asymptotic Gilbert-Varshamov bound in coding theory was improved in 1982 by the TVZ bound with the help of algebraic-geometry codes. In recent years, the TVZ bound was improved by using constructions of new types of algebraic-geometry codes. The paper surveys these recent developments and also provides a general introduction to the asymptotic theory of codes.
引用
收藏
页码:339 / 348
页数:10
相关论文
共 50 条
  • [31] A note on authentication codes from algebraic geometry
    Vladut, SG
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) : 1342 - 1345
  • [32] Algebraic Geometry Codes of Curves of Complete Intersection
    唐立忠
    Science China Mathematics, 1994, (08) : 909 - 923
  • [33] Improved Power Decoding of Algebraic Geometry Codes
    Puchinger, Sven
    Rosenkilde, Johan
    Solomatov, Grigory
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 509 - 514
  • [34] A New Family of Locally Correctable Codes Based on Degree-Lifted Algebraic Geometry Codes
    Ben-Sasson, Eli
    Gabizon, Ariel
    Kaplan, Yohay
    Kopparty, Swastik
    Saraf, Shubhangi
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 833 - 842
  • [35] Gröbner basis approach to list decoding of algebraic geometry codes
    Henry O’Keeffe
    Patrick Fitzpatrick
    Applicable Algebra in Engineering, Communication and Computing, 2007, 18 : 445 - 466
  • [36] ON APPLICATION OF ALGEBRAIC GEOMETRY CODES OF L-CONSTRUCTION IN COPY PROTECTION
    Zagumennov, D., V
    Mkrtichyan, V. V.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2019, (44): : 67 - 93
  • [37] Good and asymptotically good quantum codes derived from algebraic geometry
    La Guardia, Giuliano G.
    Pereira, Francisco Revson F.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (06)
  • [38] Asymptotically Good Nonlinear Codes From Algebraic Curves
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 5991 - 5995
  • [39] On the unique representation of very strong algebraic geometry codes
    Marquez-Corbella, Irene
    Martinez-Moro, Edgar
    Pellikaan, Ruud
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 70 (1-2) : 215 - 230
  • [40] Algebraic Geometry Codes in the Sum-Rank Metric
    Berardini, Elena
    Caruso, Xavier
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) : 3345 - 3356