Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps

被引:25
作者
Kartasalo, Kimmo [1 ,2 ]
Bulten, Wouter [3 ]
Delahunt, Brett [4 ]
Chen, Po-Hsuan Cameron [5 ]
Pinckaers, Hans [3 ]
Olsson, Henrik [1 ]
Ji, Xiaoyi [1 ]
Mulliqi, Nita [1 ]
Samaratunga, Hemamali [6 ,7 ]
Tsuzuki, Toyonori [8 ]
Lindberg, Johan [1 ]
Rantalainen, Mattias [1 ]
Wahlby, Carolina [9 ,10 ]
Litjens, Geert [3 ]
Ruusuvuori, Pekka [2 ,11 ,12 ,13 ]
Egevad, Lars [14 ]
Eklund, Martin [1 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, Nobels Vag 12, S-17177 Stockholm, Sweden
[2] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[3] Radboud Univ Nijmegen, Radboud Inst Hlth Sci, Dept Pathol, Med Ctr, Nijmegen, Netherlands
[4] Univ Otago, Wellington Sch Med & Hlth Sci, Dept Pathol & Mol Med, Wellington, New Zealand
[5] Google Hlth, Palo Alto, CA USA
[6] Aquesta Uropathol, Brisbane, Qld, Australia
[7] Univ Queensland, Brisbane, Qld, Australia
[8] Aichi Med Univ, Sch Med, Dept Surg Pathol, Nagakute, Aichi, Japan
[9] Uppsala Univ, Ctr Image Anal, Dept Informat Technol, Uppsala, Sweden
[10] BioImage Informat Facil SciLifeLab, Uppsala, Sweden
[11] Univ Turku, Canc Res Unit, Inst Biomed, Turku, Finland
[12] Univ Turku, FICAN West Canc Ctr, Turku, Finland
[13] Turku Univ Hosp, Turku, Finland
[14] Karolinska Inst, Dept Oncol & Pathol, Stockholm, Sweden
来源
EUROPEAN UROLOGY FOCUS | 2021年 / 7卷 / 04期
基金
瑞典研究理事会; 芬兰科学院;
关键词
Prostate cancer; Gleason grading; Artificial intelligence; Histopathology; Uropathology; IMAGES;
D O I
10.1016/j.euf.2021.07.002
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Diagnosis and Gleason grading of prostate cancer in biopsies are critical for the clinical management of men with prostate cancer. Despite this, the high grading variability among pathologists leads to the potential for under-and overtreatment. Artificial intelligence (AI) systems have shown promise in assisting pathologists to perform Gleason grading, which could help address this problem. In this mini-review, we highlight studies reporting on the development of AI systems for cancer detection and Gleason grading, and discuss the progress needed for widespread clinical implementation, as well as anticipated future developments. Patient summary: This mini-review summarizes the evidence relating to the validation of artificial intelligence (AI)-assisted cancer detection and Gleason grading of prostate cancer in biopsies, and highlights the remaining steps required prior to its widespread clinical implementation. We found that, although there is strong evidence to show that AI is able to perform Gleason grading on par with experienced uropathologists, more work is needed to ensure the accuracy of results from AI systems in diverse settings across different patient populations, digitization platforms, and pathology laboratories. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of European Association of Urology. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
引用
收藏
页码:687 / 691
页数:5
相关论文
共 21 条
  • [1] Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists
    Bulten, Wouter
    Balkenhol, Maschenka
    Belinga, Jean-Joel Awoumou
    Brilhante, Americo
    Cakir, Asli
    Egevad, Lars
    Eklund, Martin
    Farre, Xavier
    Geronatsiou, Katerina
    Molinie, Vincent
    Pereira, Guilherme
    Roy, Paromita
    Saile, Gunter
    Salles, Paulo
    Schaafsma, Ewout
    Tschui, Joelle
    Vos, Anne-Marie
    van Boven, Hester
    Vink, Robert
    van der Laak, Jeroen
    Hulsbergen-van der Kaa, Christina
    Litjens, Geert
    [J]. MODERN PATHOLOGY, 2021, 34 (03) : 660 - 671
  • [2] Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study
    Bulten, Wouter
    Pinckaers, Hans
    van Boven, Hester
    Vink, Robert
    de Bel, Thomas
    van Ginneken, Bram
    van der Laak, Jeroen
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    [J]. LANCET ONCOLOGY, 2020, 21 (02) : 233 - 241
  • [3] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [4] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [5] The importance of study design in the application of artificial intelligence methods in medicine
    Eklund, Martin
    Kartasalo, Kimmo
    Olsson, Henrik
    Strom, Peter
    [J]. NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [6] Adversarial attacks on medical machine learning
    Finlayson, Samuel G.
    Bowers, John D.
    Ito, Joichi
    Zittrain, Jonathan L.
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. SCIENCE, 2019, 363 (6433) : 1287 - 1289
  • [7] Grand Challenge, PANDA CHALL
  • [8] Gummeson A., 2017, SPIE
  • [9] Multiwavelet grading of pathological images of prostate
    Jafari-Khouzani, K
    Soltanian-Zadeh, H
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (06) : 697 - 704
  • [10] TOWARDS GRADING GLEASON SCORE USING GENERICALLY TRAINED DEEP CONVOLUTIONAL NEURAL NETWORKS
    Kallen, Hanna
    Molin, Jesper
    Heyden, Anders
    Lundstrom, Claes
    Astrom, Kalle
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1163 - 1167