Defect passivation grain boundaries using 3-aminopropyltrimethoxysilane for highly efficient and stable perovskite solar cells

被引:20
|
作者
Zheng, Ronghong [1 ]
Zhao, Shuangshuang [1 ]
Zhang, Hua [1 ]
Li, Haoyue [1 ]
Zhuang, Jia [1 ]
Liu, Xingchong [1 ]
Li, Haimin [1 ]
Wang, Hanyu [1 ]
机构
[1] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
关键词
Grain boundaries; Defect passivation; 3-Aminopropyltrimethoxysilane; Perovskite solar cells; HALIDE PEROVSKITES; PERFORMANCE; GROWTH; RECOMBINATION; MORPHOLOGY; STABILITY; TRANSPORT; SCAFFOLD;
D O I
10.1016/j.solener.2021.06.001
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The defects of grain boundaries and film surface are harmful to the efficiency and stability of perovskite solar cells (PSCs). Defect passivation is an effective strategy to improve the performance of PSCs. In this work, a silane coupling agent 3-aminopropyltrimethoxysilane (APMS) was used as an additive of perovskite light-absorbing layer to passivate defects, thereby significantly improving charge transport, reducing charge recombination and improving device performance. The amino group in APMS can not only form a coordinate bond with the uncoordinated Pb in the perovskite, but also form a hydrogen bond with I (N-HMIDLINE HORIZONTAL ELLIPSISI). The crystallinity and uniformity of perovskite grains were improved obviously. Therefore, the addition of APMS greatly reduces the defects of perovskite and the power conversion efficiency (PCE) increased from 18.85% to 20.72% with less hysteresis. Furthermore, a proper carbon chain can be hydrophobic to improve the moisture stability of the perovskite. The PCE of the device remains 60% of the initial device after being placed at a humidity of 50-60% for 400 h. Therefore, this work proves that the use of silane coupling agents as additives is a promising strategy to achieve efficiency and stable PSCs.
引用
收藏
页码:472 / 479
页数:8
相关论文
共 50 条
  • [1] Defect Passivation Using Trichloromelamine for Highly Efficient and Stable Perovskite Solar Cells
    Niu, Qiaoli
    Zhang, Ling
    Xu, Yao
    Yuan, Chaochao
    Qi, Weijie
    Fu, Shuai
    Ma, Yuhui
    Zeng, Wenjin
    Xia, Ruidong
    Min, Yonggang
    POLYMERS, 2022, 14 (03)
  • [2] Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells
    Byranvand, Mahdi Malekshahi
    Saliba, Michael
    SOLAR RRL, 2021, 5 (08)
  • [3] Defect Passivation for Highly Efficient and Stable Sn-Pb Perovskite Solar Cells
    Li, Tengteng
    Ma, Fupeng
    Hao, Yafeng
    Wu, Huijia
    Zhu, Pu
    Li, Ziwei
    Li, Fengchao
    Yu, Jiangang
    Liu, Meihong
    Lei, Cheng
    Liang, Ting
    CRYSTALS, 2024, 14 (09)
  • [4] Grain boundary defect passivation and iodine migration inhibition for efficient and stable perovskite solar cells
    Dong, Zhuo
    Men, Jiao
    Zhang, Bohai
    Xie, Xiaoying
    Huang, Zhengguo
    Ma, Zhibin
    Zhai, Zeyu
    Wang, Yuwen
    Zeng, Yongfei
    Wu, Jinpeng
    Lin, Yuan
    Wang, Bin
    Zhang, Jingbo
    ELECTROCHIMICA ACTA, 2024, 507
  • [5] Synergistic Defect Passivation for Highly Efficient and Stable Perovskite Solar Cells Using Sodium Dodecyl Benzene Sulfonate
    Guo, ZhongLi
    Gao, Tong
    Zhuang, Jia
    Liu, XingChong
    Guo, Heng
    Yi, Jing
    Ma, Zhu
    Li, HaiMin
    Cheng, XiaoWei
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) : 4910 - 4918
  • [6] Highly Efficient and Stable Perovskite Solar Cells Using an Effective Chelate-Assisted Defect Passivation Strategy
    Jiang, Jun
    Fang, Xiang
    Xu, Yibo
    Jia, Xuguang
    Chen, Yu
    Chen, Yiqi
    Hu, Hongwei
    Yuan, Ningyi
    Ding, Jianning
    CHEMSUSCHEM, 2020, 13 (02) : 412 - 418
  • [7] Molecule Passivation of Grain Boundaries for Ultra-Stable Perovskite Solar Cells
    Yao, Yuying
    Zhang, Jing
    Su, Hang
    Li, Yong
    Li, Nan
    Nie, Ting
    Liu, Lidan
    Ren, Xiaodong
    Yuan, Ningyi
    Ding, Jianning
    Liu, Shengzhong
    SOLAR RRL, 2023, 7 (04)
  • [8] Passivation of Grain Boundary by Squaraine Zwitterions for Defect Passivation and Efficient Perovskite Solar Cells
    Wang, Zhen
    Pradhan, Anusha
    kamarudin, Muhammad Akmal
    Pandey, Manish
    Pandey, Shyam S.
    Zhang, Putao
    Ng, Chi Huey
    Tripathi, Atul S. M.
    Ma, Tingli
    Hayase, Shuzi
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) : 10012 - 10020
  • [9] Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells
    Kim, Dohyun
    Choi, Hyuntae
    Jung, Wooteak
    Kim, Chanhyeok
    Park, Eun Young
    Kim, Sungryong
    Jeon, Nam Joong
    Song, Seulki
    Park, Taiho
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (05) : 2045 - 2055
  • [10] Examining the Interfacial Defect Passivation with Chlorinated Organic Salt for Highly Efficient and Stable Perovskite Solar Cells
    Azam, Muhammad
    Khan, Abbas Ahmad
    Liang, Guang-Xing
    Li, Gui-Jun
    Chen, Shuo
    Zheng, Zhuang-Hao
    Farooq, Umar
    Ishaq, Muhammad
    Fan, Ping
    Wang, Zhijie
    Wang, Zhan-Guo
    SOLAR RRL, 2020, 4 (11)