A CLASS OF PARABOLIC EQUATIONS DRIVEN BY THE MEAN CURVATURE FLOW

被引:0
作者
de Araujo, Anderson L. A. [1 ]
Montenegro, Marcelo [2 ]
机构
[1] Univ Fed Vicosa, CCE, Dept Matemat, Ave PH Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Univ Estadual Campinas, IMECC, Dept Matemat, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
mean curvature flow; asymptotic behaviour; stability; ASYMPTOTIC-BEHAVIOR; SINGULARITIES; SURFACES; CURVES; EVOLUTION;
D O I
10.1017/S001309151800038X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a class of parabolic equations which can be viewed as a generalized mean curvature flow acting on cylindrically symmetric surfaces with a Dirichlet condition on the boundary. We prove the existence of a unique solution by means of an approximation scheme. We also develop the theory of asymptotic stability for solutions of general parabolic problems.
引用
收藏
页码:135 / 163
页数:29
相关论文
共 24 条
[1]   Mean curvature flow through singularities for surfaces of rotation [J].
Altschuler, S ;
Angenent, SB ;
Giga, Y .
JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (03) :293-358
[2]  
ANGENENT S, 1991, J DIFFER GEOM, V33, P601
[4]   PARABOLIC EQUATIONS FOR CURVES ON SURFACES .1. CURVES WITH P-INTEGRABLE CURVATURE [J].
ANGENENT, S .
ANNALS OF MATHEMATICS, 1990, 132 (03) :451-483
[5]   ON ROTATIONALLY SYMMETRICAL MEAN-CURVATURE FLOW [J].
DZIUK, G ;
KAWOHL, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) :142-149
[6]  
Escher J., 2010, ANALYSIS, V30, P253
[7]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .2. [J].
EVANS, LC ;
SPRUCK, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (01) :321-332
[8]  
FILA M, 1992, COMMUN PART DIFF EQ, V17, P593
[9]  
Friedman A., 1964, Partial differential equations of the parabolic type
[10]  
GAGE M, 1986, J DIFFER GEOM, V23, P69