DATA ANALYSIS USING REGRESSION MODELS WITH TIME DEPENDENT AND EXTREME ERRORS: APPLICABLE TO AIR POLLUTION DATA

被引:0
|
作者
Alimoradi, S. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2008年 / 32卷 / A4期
关键词
Regression Quantiles; LSE; JTLSE; air pollution;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper develops a statistical methodology to handle regression of time series data (auto-regressive) with extreme errors. Since in most environmental sciences studies data are gathered in periodic times, this type of data appears more often. An estimation strategy is developed based on regression quantiles to deal with this problem. This is an extension of the Trimmed Least Squares Estimators (TLSE) method to a regression model with auto-regression errors, namely, mixed model. It generalizes the TLSE of regression models to the TLSE of mixed model parameters based on randomly weighted empirical process. It uses regression and auto-regression quantiles. Finally, we apply the results to some air pollution data gathered in Isfahan.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 50 条
  • [41] Using spatio-temporal land use regression models to address spatial variation in air pollution concentrations in time series studies
    Konstantina Dimakopoulou
    Alexandros Gryparis
    Klea Katsouyanni
    Air Quality, Atmosphere & Health, 2017, 10 : 1139 - 1149
  • [42] Using spatio-temporal land use regression models to address spatial variation in air pollution concentrations in time series studies
    Dimakopoulou, Konstantina
    Gryparis, Alexandros
    Katsouyanni, Klea
    AIR QUALITY ATMOSPHERE AND HEALTH, 2017, 10 (09): : 1139 - 1149
  • [43] Air Pollution Effects on Climate and Air Temperature of Tehran City Using Remote Sensing Data
    Raoufi, Seyyed Sadeq
    Goharnejad, Hamid
    Niri, Mahmoud Zakeri
    ASIAN JOURNAL OF WATER ENVIRONMENT AND POLLUTION, 2018, 15 (02) : 79 - 87
  • [44] Public Responses to Air Pollution in Shandong Province Using the Online Complaint Data
    Sun, Yong
    Ji, Min
    Jin, Fengxiang
    Wang, Huimeng
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (03)
  • [45] Estimation of missing values in air pollution data using single imputation techniques
    Norazian, Mohamed Noor
    Shukri, Yahaya Ahmad
    Azam, Ramli Nor
    Al Bakri, Abdullah Mohd Mustafa
    SCIENCEASIA, 2008, 34 (03): : 341 - 345
  • [46] A novel principal component analysis for spatially misaligned multivariate air pollution data
    Jandarov, Roman A.
    Sheppard, Lianne A.
    Sampson, Paul D.
    Szpiro, Adam A.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2017, 66 (01) : 3 - 28
  • [47] Spatial Analysis of Air Pollution Data Based on Linked Micromap Plots in Korea
    Ahn, Jeong Yong
    PROCEEDINGS OF THE 2015 AASRI INTERNATIONAL CONFERENCE ON CIRCUITS AND SYSTEMS (CAS 2015), 2015, 9 : 173 - 177
  • [48] Time Series Analysis of Air Pollution in Bengaluru Using ARIMA Model
    Abhilash, M. S. K.
    Thakur, Amrita
    Gupta, Deepa
    Sreevidya, B.
    AMBIENT COMMUNICATIONS AND COMPUTER SYSTEMS, RACCCS 2017, 2018, 696 : 413 - 426
  • [49] A stochastic epidemic model coupled with seasonal air pollution: analysis and data fitting
    Sha He
    Sanyi Tang
    Yongli Cai
    Weiming Wang
    Libin Rong
    Stochastic Environmental Research and Risk Assessment, 2020, 34 : 2245 - 2257
  • [50] A stochastic epidemic model coupled with seasonal air pollution: analysis and data fitting
    He, Sha
    Tang, Sanyi
    Cai, Yongli
    Wang, Weiming
    Rong, Libin
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (12) : 2245 - 2257