DATA ANALYSIS USING REGRESSION MODELS WITH TIME DEPENDENT AND EXTREME ERRORS: APPLICABLE TO AIR POLLUTION DATA

被引:0
|
作者
Alimoradi, S. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2008年 / 32卷 / A4期
关键词
Regression Quantiles; LSE; JTLSE; air pollution;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper develops a statistical methodology to handle regression of time series data (auto-regressive) with extreme errors. Since in most environmental sciences studies data are gathered in periodic times, this type of data appears more often. An estimation strategy is developed based on regression quantiles to deal with this problem. This is an extension of the Trimmed Least Squares Estimators (TLSE) method to a regression model with auto-regression errors, namely, mixed model. It generalizes the TLSE of regression models to the TLSE of mixed model parameters based on randomly weighted empirical process. It uses regression and auto-regression quantiles. Finally, we apply the results to some air pollution data gathered in Isfahan.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 50 条
  • [1] Prediction of Air Pollution Concentration Using Weather Data and Regression Models
    Trenchevski, Aleksandar
    Kalendar, Marija
    Gjoreski, Hristijan
    Efnusheva, Danijela
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON APPLIED INNOVATIONS IN IT, 2020, 8 (01): : 55 - 61
  • [2] Extreme Value Analysis of Istanbul Air Pollution Data
    Ercelebi, Selamet G.
    Toros, Hueseyin
    CLEAN-SOIL AIR WATER, 2009, 37 (02) : 122 - 131
  • [3] Extreme value analysis of Munich air pollution data
    Kuchenhoff, H
    Thamerus, M
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 1996, 3 (02) : 127 - 141
  • [4] Time-varying coefficient models for the analysis of air pollution and health outcome data
    Lee, Duncan
    Shaddick, Gavin
    BIOMETRICS, 2007, 63 (04) : 1253 - 1261
  • [5] Air Pollution Modeling from Remotely Sensed Data Using Regression Techniques
    Mozumder, Chitrini
    Reddy, K. Venkata
    Pratap, Deva
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2013, 41 (02) : 269 - 277
  • [6] Air Pollution Modeling from Remotely Sensed Data Using Regression Techniques
    Chitrini Mozumder
    K. Venkata Reddy
    Deva Pratap
    Journal of the Indian Society of Remote Sensing, 2013, 41 : 269 - 277
  • [7] Multidimensional Data Model for Air Pollution Data Analysis
    Doreswamy
    Harishkumar, K. S.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 1684 - 1689
  • [8] An application of a new extreme value distribution to air pollution data
    Hurairah, Ahmed
    Ibrahim, Noor Akma
    Bin Daud, Isa
    Haron, Kassim
    MANAGEMENT OF ENVIRONMENTAL QUALITY, 2005, 16 (01) : 17 - 25
  • [9] Air pollution detection using MODIS data
    Harbula, Jan
    Kopackova, Veronika
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS II, 2011, 8181
  • [10] Using of generalized additive model for model selection in multiple poisson regression for air pollution data
    Terzi, Y.
    Cengiz, M. A.
    SCIENTIFIC RESEARCH AND ESSAYS, 2009, 4 (09): : 867 - 871