EMDLAB: A toolbox for analysis of single-trial EEG dynamics using empirical mode decomposition

被引:30
作者
Al-Subari, K. [1 ,2 ]
Al-Baddai, S. [1 ,2 ]
Tome, A. M. [3 ]
Goldhacker, M. [1 ,4 ]
Faltermeier, R. [5 ]
Lang, E. W. [1 ]
机构
[1] Univ Regensburg, CIML Grp, Inst Biophys, D-93040 Regensburg, Germany
[2] Univ Regensburg, Inst Informat Sci, D-93040 Regensburg, Germany
[3] Univ Aveiro, DETI, IEETA, P-3810193 Aveiro, Portugal
[4] Univ Regensburg, Inst Expt Psychol, D-93040 Regensburg, Germany
[5] Univ Hosp Regensburg, Clin Neurosurg, Regensburg, Germany
关键词
EMDLAB; EEGLAB toolbox; EEG; Empirical mode decomposition; Intrinsic mode functions;
D O I
10.1016/j.jneumeth.2015.06.020
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Empirical mode decomposition (EMD) is an empirical data decomposition technique. Recently there is growing interest in applying EMD in the biomedical field. New method: EMDLAB is an extensible plug-in for the EEGLAB toolbox, which is an open software environment for electrophysiological data analysis. Results: EMDLAB can be used to perform, easily and effectively, four common types of EMD: plain EMD, ensemble EMD (EEMD), weighted sliding EMD (wSEMD) and multivariate EMD (MEMD) on EEG data. In addition, EMDLAB is a user-friendly toolbox and closely implemented in the EEGLAB toolbox. Comparison with existing methods: EMDLAB gains an advantage over other open-source toolboxes by exploiting the advantageous visualization capabilities of EEGLAB for extracted intrinsic mode functions (IMFs) and Event-Related Modes (ERMs) of the signal. Conclusions: EMDLAB is a reliable, efficient, and automated solution for extracting and visualizing the extracted IMFs and ERMs by EMD algorithms in EEG study. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 37 条
[1]   Neuroelectromagnetic Forward Head Modeling Toolbox [J].
Acar, Zeynep Akalin ;
Makeig, Scott .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 190 (02) :258-270
[2]   Bidimensional ensemble empirical mode decomposition of functional biomedical images taken during a contour integration task [J].
Al-Baddai, S. ;
Al-Subari, K. ;
Tome, A. M. ;
Volberg, G. ;
Hanslmayr, S. ;
Hammwoehner, R. ;
Lang, E. W. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 13 :218-236
[3]   Ensemble Empirical Mode Decomposition Analysis of EEG Data Collected during a Contour Integration Task [J].
Al-Subari, Karema ;
Al-Baddai, Saad ;
Tome, Ana Maria ;
Volberg, Gregor ;
Hammwoehner, Rainer ;
Lang, Elmar W. .
PLOS ONE, 2015, 10 (04)
[4]  
[Anonymous], 2010, PROC INT JOINT C NEU
[5]  
Attoh-Okine N, 2008, EURASIP J ADV SIGNAL
[6]   EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J].
Delorme, A ;
Makeig, S .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 134 (01) :9-21
[7]   EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing [J].
Delorme, Arnaud ;
Mullen, Tim ;
Kothe, Christian ;
Acar, Zeynep Akalin ;
Bigdely-Shamlo, Nima ;
Vankov, Andrey ;
Makeig, Scott .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[8]   Multichannel matching pursuit and EEG inverse solutions [J].
Durka, PJ ;
Matysiak, A ;
Montes, EM ;
Sosa, PV ;
Blinowska, KJ .
JOURNAL OF NEUROSCIENCE METHODS, 2005, 148 (01) :49-59
[9]   WEIGHTED SLIDING EMPIRICAL MODE DECOMPOSITION [J].
Faltermeier, R. ;
Zeiler, A. ;
Tome, A. M. ;
Brawanski, A. ;
Lang, E. W. .
ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2011, 3 (04) :509-526
[10]   Empirical mode decomposition as a filter bank [J].
Flandrin, P ;
Rilling, G ;
Gonçalvés, P .
IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) :112-114