Measuring fractal dimension of metro systems

被引:3
|
作者
Deng, S. [1 ]
Li, W. [1 ,2 ]
Gu, J. [3 ]
Zhu, Y. [1 ,4 ,5 ]
Zhao, L. [1 ]
Han, J. [1 ]
机构
[1] Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
[4] LUNAM Univ, ISMANS, F-72000 Le Mans, France
[5] Univ Maine, IMMM, UMR CNRS 6283, F-72085 Le Mans, France
来源
4TH INTERNATIONAL WORKSHOP ON STATISTICAL PHYSICS AND MATHEMATICS FOR COMPLEX SYSTEMS (SPMCS2014) | 2015年 / 604卷
关键词
SELF-SIMILARITY; SMALL-WORLD; COMPLEX;
D O I
10.1088/1742-6596/604/1/012005
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss cluster growing method and box-covering method as well as their connection to fractal geometry. Our measurements show that for small network systems, box-cvering method gives a better scaling relation. We then measure both unweighted and weighted metro networks with optimal box-covering method.
引用
收藏
页数:8
相关论文
共 50 条