Measuring fractal dimension of metro systems

被引:3
|
作者
Deng, S. [1 ]
Li, W. [1 ,2 ]
Gu, J. [3 ]
Zhu, Y. [1 ,4 ,5 ]
Zhao, L. [1 ]
Han, J. [1 ]
机构
[1] Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
[4] LUNAM Univ, ISMANS, F-72000 Le Mans, France
[5] Univ Maine, IMMM, UMR CNRS 6283, F-72085 Le Mans, France
来源
4TH INTERNATIONAL WORKSHOP ON STATISTICAL PHYSICS AND MATHEMATICS FOR COMPLEX SYSTEMS (SPMCS2014) | 2015年 / 604卷
关键词
SELF-SIMILARITY; SMALL-WORLD; COMPLEX;
D O I
10.1088/1742-6596/604/1/012005
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss cluster growing method and box-covering method as well as their connection to fractal geometry. Our measurements show that for small network systems, box-cvering method gives a better scaling relation. We then measure both unweighted and weighted metro networks with optimal box-covering method.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Assessing the Suitability of Fractal Dimension for Measuring Graphic Complexity Change in Schematic Metro Networks
    Lan, Tian
    Wu, Zhiwei
    Sun, Chenzhen
    Cheng, Donglin
    Shi, Xing
    Zeng, Guangjun
    Zhang, Hong
    Peng, Qian
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (02)
  • [2] MEASURING OF SPECTRAL FRACTAL DIMENSION
    Berke, Jozsef
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2007, 3 (03) : 409 - 418
  • [3] Measuring of spectral Fractal dimension
    Berke, J.
    Advances in Systems, Computing Sciences and Software Engineering, 2006, : 397 - 402
  • [4] MEASURING THE FRACTAL DIMENSION OF TUMOR BORDERS
    CROSS, SS
    SCHOLFIELD, JH
    KENNEDY, A
    COTTON, DWK
    JOURNAL OF PATHOLOGY, 1992, 168 : A117 - A117
  • [5] MEASURING THE FRACTAL DIMENSION OF THE RETINAL VASCULATURE
    CROSS, SS
    TALBOT, JF
    COTTON, DWK
    JOURNAL OF PATHOLOGY, 1992, 168 : A158 - A158
  • [6] INTRINSIC OSCILLATIONS IN MEASURING THE FRACTAL DIMENSION
    BADII, R
    POLITI, A
    PHYSICS LETTERS A, 1984, 104 (6-7) : 303 - 305
  • [7] Methods of measuring the fractal dimension and fractal signatures of a multidimensional stochastic
    Potapov, AA
    German, VA
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2004, 49 (12) : 1370 - 1391
  • [8] THE FRACTAL DIMENSION OF TAXONOMIC SYSTEMS
    BURLANDO, B
    JOURNAL OF THEORETICAL BIOLOGY, 1990, 146 (01) : 99 - 114
  • [9] Fractal dimension as a tool for defining and measuring naturalness
    Hagerhall, CM
    Designing Social Innovation: Planning, Building, Evaluating, 2005, : 75 - 82
  • [10] MEASURING THE FRACTAL DIMENSION OF NATURAL SURFACES USING A ROBUST FRACTAL ESTIMATOR
    CLARKE, KC
    SCHWEIZER, DM
    CARTOGRAPHY AND GEOGRAPHIC INFORMATION SYSTEMS, 1991, 18 (01): : 37 - 47