Stability analysis of a class of nonlinear uncertain systems via pseudo time approach

被引:0
作者
Farahani, S [1 ]
Yazdanpanah, MJ [1 ]
机构
[1] Univ Tehran, Dept Elect & Comp Engn, Tehran, Iran
来源
ROBUST CONTROL DESIGN 2000, VOLS 1 & 2 | 2000年 / 1-2卷
关键词
stability; nonlinear uncertain system; pseudo time; peak; non-autonomous system;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the problem of stability analysis of a class of nonlinear uncertain systems is addressed. It is shown that by defining a new time coordinate, uncertain system can be replaced by a certain counterpart. The stability of the resulting system will guarantee the stability of the original uncertain system. A qualitative discussion is also done on the peaks of this nonlinear uncertain system. Copyright ((C))2000 IFAC.
引用
收藏
页码:355 / 360
页数:6
相关论文
共 15 条
[1]   ON ULTIMATE BOUNDEDNESS CONTROL OF UNCERTAIN SYSTEMS IN THE ABSENCE OF MATCHING ASSUMPTIONS [J].
BARMISH, BR ;
LEITMANN, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (01) :153-158
[2]   ROBUSTNESS OF UNCERTAIN SYSTEMS IN THE ABSENCE OF MATCHING ASSUMPTIONS [J].
CHEN, YH ;
LEITMANN, G .
INTERNATIONAL JOURNAL OF CONTROL, 1987, 45 (05) :1527-1542
[3]   ON THE ROBUSTNESS OF MISMATCHED UNCERTAIN DYNAMIC-SYSTEMS [J].
CHEN, YH .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1987, 109 (01) :29-35
[4]   CONTINUOUS STATE FEEDBACK GUARANTEEING UNIFORM ULTIMATE BOUNDEDNESS FOR UNCERTAIN DYNAMIC-SYSTEMS [J].
CORLESS, MJ ;
LEITMANN, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (05) :1139-1144
[5]   UNCERTAIN DYNAMICAL-SYSTEMS - LYAPUNOV MIN-MAX APPROACH [J].
GUTMAN, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (03) :437-443
[6]   SYSTEMATIC DESIGN OF ADAPTIVE CONTROLLERS FOR FEEDBACK LINEARIZABLE SYSTEMS [J].
KANELLAKOPOULOS, I ;
KOKOTOVIC, PV ;
MORSE, AS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (11) :1241-1253
[7]  
Khalil HK., 1992, NONLINEAR SYSTEMS
[8]  
Krstic M, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P2257, DOI 10.1109/CDC.1995.480539
[9]  
KRSTIC M, 1994, IEEE DECIS CONTR P, P1633, DOI 10.1109/CDC.1994.411209
[10]   ROBUST STABILIZATION OF FEEDBACK LINEARIZABLE TIME-VARYING UNCERTAIN NONLINEAR-SYSTEMS [J].
MARINO, R ;
TOMEI, P .
AUTOMATICA, 1993, 29 (01) :181-189