Nanoparticles for light management in ultrathin chalcopyrite solar cells

被引:20
作者
Schmid, Martina [1 ,2 ]
Manley, Phillip [1 ]
Ott, Andreas [3 ]
Song, Min [1 ,2 ]
Yin, Guanchao [1 ]
机构
[1] Helmholtz Zentrum Berlin, Nanoopt Konzepte PV, D-14109 Berlin, Germany
[2] Free Univ Berlin, Dept Phys, D-14195 Berlin, Germany
[3] Helmholtz Zentrum Berlin, Inst Weiche Mat & Funkt Mat, D-14109 Berlin, Germany
关键词
ultrathin CIGSe solar cells; Cu(In; Ga)Se-2; nanoparticles; plasmonics; dielectric nanostructures; absorption enhancement; scattering; near-field enhancement; ENHANCED PERFORMANCE; SCATTERING; ABSORPTION;
D O I
10.1557/jmr.2016.382
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We evaluate the potential of inserting metallic, metal-dielectric core-shell, and fully dielectric nanoparticles in ultrathin chalcopyrite solar cells to enhance absorption which experiences a significant drop for absorber thicknesses below 500 nm. For different integration positions at the front or at the rear of the solar cell structure theoretical expectations and potential benefits originating from light scattering, near-field enhancement and coupling into waveguide modes by the nanoparticles are presented. These benefits are always balanced against experimental challenges arising for particular geometries due to the very specific fabrication processes of chalcopyrite solar cells. In particular high absorber deposition temperatures as well as contact layers that are relatively thick compared to other devices need to be considered. Based on this, we will need to go beyond some geometries that have proven beneficial for other types of solar cells and identify the most promising configurations for chalcopyrite-based devices.
引用
收藏
页码:3273 / 3289
页数:17
相关论文
共 46 条
  • [1] Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?
    Akimov, Yu A.
    Koh, W. S.
    Sian, S. Y.
    Ren, S.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (07)
  • [2] [Anonymous], 2015, Risk List
  • [3] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
  • [4] Bohren C. F., 1998, Wiley Science Series
  • [5] Structural characterization of the (AgCu)(InGa)Se2 thin film alloy system for solar cells
    Boyle, J. H.
    McCandless, B. E.
    Hanket, G. M.
    Shafarman, W. N.
    [J]. THIN SOLID FILMS, 2011, 519 (21) : 7292 - 7295
  • [6] Surface plasmon enhancement of polymer solar cells by penetrating Au/SiO2 core/shell nanoparticles into all organic layers
    Chen, Boxue
    Zhang, Wenfeng
    Zhou, Xinghao
    Huang, Xiao
    Zhao, Xuemei
    Wang, Haitao
    Liu, Min
    Lu, Yalin
    Yang, Shangfeng
    [J]. NANO ENERGY, 2013, 2 (05) : 906 - 915
  • [7] Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles
    Derkacs, D.
    Lim, S. H.
    Matheu, P.
    Mar, W.
    Yu, E. T.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (09)
  • [8] Edwards D.F., 1985, Handbook of optical constants of solids
  • [9] Light trapping in ultrathin plasmonic solar cells
    Ferry, Vivian E.
    Verschuuren, Marc A.
    Li, Hongbo B. T.
    Verhagen, Ewold
    Walters, Robert J.
    Schropp, Ruud E. I.
    Atwater, Harry A.
    Polman, Albert
    [J]. OPTICS EXPRESS, 2010, 18 (13): : A237 - A245
  • [10] Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles
    Gorelikov, Ivan
    Matsuura, Naomi
    [J]. NANO LETTERS, 2008, 8 (01) : 369 - 373