A Neural Network Type Approach for Constructing Runge-Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions

被引:2
作者
Jerbi, Houssem [1 ]
Ben Aoun, Sondess [2 ]
Omri, Mohamed [3 ]
Simos, Theodore E. [4 ,5 ,6 ]
Tsitouras, Charalampos [7 ]
机构
[1] Univ Hail, Coll Engn, Dept Ind Engn, Hail 1234, Saudi Arabia
[2] Univ Hail, Coll Comp Sci & Engn, Dept Comp Engn, Hail 1234, Saudi Arabia
[3] King Abdulaziz Univ, Deanship Sci Res DSR, Jeddah 21589, Saudi Arabia
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Neijing Normal Univ, Data Recovery Key Lab Sichun Prov, Neijiang 641100, Peoples R China
[6] Democritus Univ Thrace, Dept Civil Engn, Sect Math, GR-67100 Xanthi, Greece
[7] Natl & Kapodistrian Univ Athens, Gen Dept, GR-34400 Psachna, Greece
关键词
initial value problem; Runge-Kutta pairs; differential evolution; periodic orbits; 5TH-ORDER; FORMULAS; FAMILY;
D O I
10.3390/math10050827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze a set of explicit Runge-Kutta pairs of orders six and five that share no extra properties, e.g., long intervals of periodicity or vanishing phase-lag etc. This family of pairs provides five parameters from which one can freely pick. Here, we use a Neural Network-like approach where these coefficients are trained on a couple of model periodic problems. The aim of this training is to produce a pair that furnishes best results after using certain intervals and tolerance. Then we see that this pair performs very well on a wide range of problems with periodic solutions.
引用
收藏
页数:10
相关论文
共 25 条
[1]  
Butcher J.C., 1964, J AUSTR MATH SOC, V4, P179, DOI [10.1017/S1446788700023387, DOI 10.1017/S1446788700023387]
[2]  
Butcher J.C., 2016, NUMERICAL METHODS OR
[3]   AN EXPLICIT 6TH-ORDER METHOD WITH PHASE-LAG OF ORDER 8 FOR Y''=F(T, Y) [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (03) :365-368
[4]   GLOBAL ERROR ESTIMATION WITH RUNGE-KUTTA TRIPLES [J].
DORMAND, JR ;
LOCKYER, MA ;
MCGORRIGAN, NE ;
PRINCE, PJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 18 (09) :835-846
[5]  
Dormand JR., 1980, J. Comput. Appl. Math, V6, P19, DOI DOI 10.1016/0771-050X(80)90013-3
[6]   CLASSICAL FIFTH-ORDER AND SEVENTH-ORDER RUNGE-KUTTA FORMULAS WITH STEPSIZE CONTROL [J].
FEHLBERG, E .
COMPUTING, 1969, 4 (02) :93-&
[8]   Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs [J].
Franco, J. M. ;
Gomez, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 :643-657
[9]  
Hairer E., 1987, SOLVING ORDINARY DIF, V29, DOI [10.1016/0378-4754(87)90083-8, DOI 10.1016/0378-4754(87)90083-8]
[10]  
Kutta W., 1901, Z MATH PHYS, V46, P435