LARGE-SCALE OPTIMIZATION WITH LINEAR EQUALITY CONSTRAINTS USING REDUCED COMPACT REPRESENTATION\ast

被引:3
作者
Brust, Johannes J. [1 ,2 ]
Marcia, Roummel F. [3 ]
Petra, Cosmin G. [4 ]
Saunders, Michael A. [5 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Argonne Natl Lab, Lemont, IL 60439 USA
[3] Univ Calif Merced, Dept Appl Math, Merced, CA 95343 USA
[4] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
[5] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
关键词
large-scale optimization; compact representation; trust-region method; limited memory; LSQR; sparse QR; QUASI-NEWTON MATRICES; LIMITED-MEMORY; ALGORITHM;
D O I
10.1137/21M1393819
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For optimization problems with linear equality constraints, we prove that the (1,1) block of the inverse KKT matrix remains unchanged when projected onto the nullspace of the constraint matrix. We develop reduced compact representations of the limited-memory inverse BFGS Hessian to compute search directions efficiently when the constraint Jacobian is sparse. Orthogonal projections are implemented by a sparse QR factorization or a preconditioned LSQR iteration. In numerical experiments two proposed trust-region algorithms improve in computation times, often significantly, compared to previous implementations of related algorithms and compared to IPOPT.
引用
收藏
页码:A103 / A127
页数:25
相关论文
共 31 条
  • [1] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [2] Broyden C. G., 1970, Journal of the Institute of Mathematics and Its Applications, V6, P222
  • [3] Brust J. J., 2018, THESIS U CALIFORNIA
  • [4] A dense initialization for limited-memory quasi-Newton methods
    Brust, Johannes
    Burdakov, Oleg
    Erway, Jennifer B.
    Marcia, Roummel F.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 74 (01) : 121 - 142
  • [5] On solving L-SR1 trust-region subproblems
    Brust, Johannes
    Erway, Jennifer B.
    Marcia, Roummel F.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 66 (02) : 245 - 266
  • [6] Large-scale quasi-Newton trust-region methods with low-dimensional linear equality constraints
    Brust, Johannes J.
    Marcia, Roummel F.
    Petra, Cosmin G.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 74 (03) : 669 - 701
  • [7] On efficiently combining limited-memory and trust-region techniques
    Burdakov O.
    Gong L.
    Zikrin S.
    Yuan Y.-X.
    [J]. Mathematical Programming Computation, 2017, 9 (1) : 101 - 134
  • [8] Byrd RH, 2006, NONCONVEX OPTIM, V83, P35
  • [9] REPRESENTATIONS OF QUASI-NEWTON MATRICES AND THEIR USE IN LIMITED MEMORY METHODS
    BYRD, RH
    NOCEDAL, J
    SCHNABEL, RB
    [J]. MATHEMATICAL PROGRAMMING, 1994, 63 (02) : 129 - 156
  • [10] Conn A. R., 2000, TRUST REGION METHODS, DOI DOI 10.1137/1.9780898719857