Shock trains on a planar beach: quasi-analytical and fully numerical solutions

被引:0
|
作者
Soldini, L. [1 ]
Antuono, M. [2 ]
Brocchini, M. [1 ]
机构
[1] Univ Politecn Marche, DICEA, Ancona, Italy
[2] CNR INSEAN, Rome, Italy
关键词
Shock waves; Nonlinear shallow water equations; Analytical and numerical solutions; SHALLOW-WATER EQUATIONS; RUN-UP; SOLITARY WAVES; CROSS-SECTION; FLOWS;
D O I
10.1007/s11069-016-2343-8
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study, part of the Special Issue dedicated to the 70th anniversary of Professor Efim Pelinovsky, focuses on a topic that has been central in Professor Pelinovsky's research, i.e. the analytical and numerical modelling of shallow water waves. We specifically focus on the evolution of trains of shock waves on a planar beach. Antuono (J Fluid Mech 658:166-187, 2011) has, for the first time, proposed a quasi-analytical solution for a train of shock waves forced by a constant Riemann invariant. The present contribution clarifies the validity of such solution and its value for benchmarking nonlinear shallow water equation solvers. Hence, the same tests of Antuono (J Fluid Mech 658:166-187, 2011) have been run by means of the solver of Brocchini et al. (Coast Eng 43(2):105-129, 2001) revealing surprisingly and reassuring good agreements. This provides significant support to the mentioned analytical solution and allows to critically analyse the eventual discrepancies, due to the practicalities of running numerical shallow water solutions (e.g. influence of the boundary conditions, of the numerical resolution, etc.).
引用
收藏
页码:S621 / S635
页数:15
相关论文
共 40 条