Robust identification approach for nonlinear state-space models

被引:10
作者
Liu, Xin [1 ]
Yang, Xianqiang [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear system identification; Robustness; Student's t-distribution; Particle smoother; Expectation-maximization algorithm; SYSTEM-IDENTIFICATION; MULTIMODEL APPROACH; LPV APPROACH;
D O I
10.1016/j.neucom.2018.12.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of nonlinear state-space model (NSSM) with output observations corrupted by outliers is investigated in this paper. The outlier is commonly encountered in practical industrial processes which should not be ignored in nonlinear processes modeling. The statistical scheme based on the Student's t-distribution is applied to resist the outlier and the expectation-maximization (EM) algorithm is employed to simultaneously identify the undetermined model and noise parameters. A particle smoother is introduced and used to approximately calculate the desired Q-function. The usefulness of the proposed approach is demonstrated via the numerical and mechanical examples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:329 / 338
页数:10
相关论文
共 44 条
  • [21] Jabali MBA, 2017, INT J CONTROL AUTOM, V15, P883, DOI [10.1007/s12555-015-1432-1, 10.1007/s12555-015-1432-x]
  • [22] Robust Identification of Piecewise/Switching Autoregressive Exogenous Process
    Jin, Xing
    Huang, Biao
    [J]. AICHE JOURNAL, 2010, 56 (07) : 1829 - 1844
  • [23] LIU CH, 1995, STAT SINICA, V5, P19
  • [24] Identification of linear time-varying systems
    Liu, K
    [J]. JOURNAL OF SOUND AND VIBRATION, 1997, 206 (04) : 487 - 505
  • [25] Robust multiple-model LPV approach to nonlinear process identification using mixture t distributions
    Lu, Yaojie
    Huang, Biao
    [J]. JOURNAL OF PROCESS CONTROL, 2014, 24 (09) : 1472 - 1488
  • [26] Improved Initialization for Nonlinear State-Space Modeling
    Marconato, Anna
    Sjoberg, Jonas
    Suykens, Johan A. K.
    Schoukens, Johan
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (04) : 972 - 980
  • [27] Nonlinear system identification
    Nowak, RD
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2002, 21 (01) : 109 - 122
  • [28] Robust Inference for State-Space Models with Skewed Measurement Noise
    Nurminen, Henri
    Ardeshiri, Tohid
    Piche, Robert
    Gustafsson, Fredrik
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 1898 - 1902
  • [29] System identification application using Hammerstein model
    Ozer, Saban
    Zorlu, Hasan
    Mete, Selcuk
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2016, 41 (06): : 597 - 605
  • [30] Identification of nonlinear systems using NARMAX model
    Rahrooh, Alireza
    Shepard, Scott
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1198 - E1202