Robust identification approach for nonlinear state-space models

被引:10
|
作者
Liu, Xin [1 ]
Yang, Xianqiang [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear system identification; Robustness; Student's t-distribution; Particle smoother; Expectation-maximization algorithm; SYSTEM-IDENTIFICATION; MULTIMODEL APPROACH; LPV APPROACH;
D O I
10.1016/j.neucom.2018.12.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of nonlinear state-space model (NSSM) with output observations corrupted by outliers is investigated in this paper. The outlier is commonly encountered in practical industrial processes which should not be ignored in nonlinear processes modeling. The statistical scheme based on the Student's t-distribution is applied to resist the outlier and the expectation-maximization (EM) algorithm is employed to simultaneously identify the undetermined model and noise parameters. A particle smoother is introduced and used to approximately calculate the desired Q-function. The usefulness of the proposed approach is demonstrated via the numerical and mechanical examples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:329 / 338
页数:10
相关论文
共 50 条
  • [1] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428
  • [2] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [3] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [4] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184
  • [5] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [6] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [7] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [8] Nonlinear state-space system identification with robust laplace model
    Liu, Xin
    Yang, Xianqiang
    Liu, Xiaofeng
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (06) : 1492 - 1501
  • [9] Parameter Identification for Nonlinear State-Space Models of a Biological Network via Linearization and Robust State Estimation
    Xiong, Jie
    Zhou, Tong
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 8235 - 8240
  • [10] Further results on "System identification of nonlinear state-space models"
    Liu, Xin
    Lou, Sicheng
    Dai, Wei
    AUTOMATICA, 2023, 148