Robust identification approach for nonlinear state-space models

被引:10
作者
Liu, Xin [1 ]
Yang, Xianqiang [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Astronaut, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear system identification; Robustness; Student's t-distribution; Particle smoother; Expectation-maximization algorithm; SYSTEM-IDENTIFICATION; MULTIMODEL APPROACH; LPV APPROACH;
D O I
10.1016/j.neucom.2018.12.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of nonlinear state-space model (NSSM) with output observations corrupted by outliers is investigated in this paper. The outlier is commonly encountered in practical industrial processes which should not be ignored in nonlinear processes modeling. The statistical scheme based on the Student's t-distribution is applied to resist the outlier and the expectation-maximization (EM) algorithm is employed to simultaneously identify the undetermined model and noise parameters. A particle smoother is introduced and used to approximately calculate the desired Q-function. The usefulness of the proposed approach is demonstrated via the numerical and mechanical examples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:329 / 338
页数:10
相关论文
共 44 条
  • [1] Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach-Part 1
    Adeniran, Ahmed Adebowale
    El Ferik, Sami
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (07): : 1149 - 1159
  • [2] Approximate Inference in State-Space Models With Heavy-Tailed Noise
    Agamennoni, Gabriel
    Nieto, Juan I.
    Nebot, Eduardo M.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5024 - 5037
  • [3] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [4] Frequency domain identification of Wiener models
    Bai, EW
    [J]. AUTOMATICA, 2003, 39 (09) : 1521 - 1530
  • [5] Billings S. A., 2005, IEEE T NEURAL NETWOR, V16
  • [6] Set-membership LPV model identification of vehicle lateral dynamics
    Cerone, Vito
    Piga, Dario
    Regruto, Diego
    [J]. AUTOMATICA, 2011, 47 (08) : 1794 - 1799
  • [7] Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm
    Chen, Lei
    Tulsyan, Aditya
    Huang, Biao
    Liu, Fei
    [J]. JOURNAL OF PROCESS CONTROL, 2013, 23 (10) : 1480 - 1496
  • [8] Chen Lei, 2014, IFAC P, V47, P9388
  • [9] Identification of nonlinear parameter varying systems with missing output data
    Deng, Jing
    Huang, Biao
    [J]. AICHE JOURNAL, 2012, 58 (11) : 3454 - 3467
  • [10] Dong H., 2014, AUTOMATICA, V50