Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm

被引:0
|
作者
Huynh, Duy C. [1 ]
Dunnigan, Matthew W. [1 ]
机构
[1] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new application of a dynamic particle swarm optimization (PSO) algorithm for parameter estimation of an induction machine. The dynamic PSO is one of the PSO variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO as linear time-varying parameters. The acceleration coefficients are varied during the evolution process of the PSO to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The algorithm uses the measurements of the three-phase stator currents, voltages, and the speed of the induction machine as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the induction machine parameters achieved using traditional tests such as the dc, no-load, and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, and dynamic PSO. The results show that the dynamic PSO is better than the standard PSO and GA for parameter estimation of the induction machine.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 50 条
  • [41] Parameter Selection of a Support Vector Machine, Based on a Chaotic Particle Swarm Optimization Algorithm
    Dong, Huang
    Jian, Gao
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2015, 15 (03) : 140 - 149
  • [42] An estimation of distribution particle swarm optimization algorithm
    Iqbal, Mudassar
    Montes de Oca, Marco A.
    ANT COLONY OPTIMIZATION AND SWARM INTELLIGENCE, PROCEEDINGS, 2006, 4150 : 72 - 83
  • [43] Parameter Selection of Support Vector Machine based on Chaotic Particle Swarm Optimization Algorithm
    Peng, Jingming
    Wang, Shuzhou
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3271 - 3274
  • [44] A Hybrid Particle Swarm Algorithm for Nonlinear Parameter Estimation
    Pei, Shengyu
    Zhou, Yongquan
    Luo, Qifang
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 219 - 222
  • [45] On line parameter identification of an induction motor, using improved particle swarm optimization
    Chen Guangyi
    Wei, Guo
    Huang Kaisheng
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 745 - +
  • [46] Multiobjective particle swarm optimization for parameter estimation in hydrology
    Gill, M. Kashif
    Kaheil, Yasir H.
    Khalil, Abedalrazq
    McKee, Mac
    Bastidas, Luis
    WATER RESOURCES RESEARCH, 2006, 42 (07)
  • [47] Particle Swarm Optimization for Chaotic System Parameter Estimation
    Samanta, B.
    Nataraj, C.
    2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 74 - 80
  • [48] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [49] Parameter estimation for chaotic systems by particle swarm optimization
    He, Qie
    Wang, Ling
    Liu, Bo
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 654 - 661
  • [50] Dynamic Cost Estimation of Reconstruction Project Based on Particle Swarm Optimization Algorithm
    Li L.
    Informatica (Slovenia), 2023, 47 (02): : 173 - 182