Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm

被引:0
|
作者
Huynh, Duy C. [1 ]
Dunnigan, Matthew W. [1 ]
机构
[1] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
来源
IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010) | 2010年
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new application of a dynamic particle swarm optimization (PSO) algorithm for parameter estimation of an induction machine. The dynamic PSO is one of the PSO variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO as linear time-varying parameters. The acceleration coefficients are varied during the evolution process of the PSO to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The algorithm uses the measurements of the three-phase stator currents, voltages, and the speed of the induction machine as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the induction machine parameters achieved using traditional tests such as the dc, no-load, and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, and dynamic PSO. The results show that the dynamic PSO is better than the standard PSO and GA for parameter estimation of the induction machine.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 50 条
  • [41] Design of Dynamic Modular Neural Network Based on Adaptive Particle Swarm Optimization Algorithm
    Qiao, Jun-Fei
    Lu, Chao
    Li, Wen-Jing
    IEEE ACCESS, 2018, 6 : 10850 - 10857
  • [42] Parameter estimation in batch process using EM algorithm with particle filter
    Zhao, Zhonggai
    Huang, Biao
    Liu, Fei
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 57 : 159 - 172
  • [43] Acceleration harmonic estimation for a hydraulic shaking table by using particle swarm optimization
    Yao, Jianjun
    Yu, Han
    Dietz, Matt
    Xiao, Rui
    Chen, Shuo
    Wang, Tao
    Niu, Qingtao
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2017, 39 (05) : 738 - 747
  • [44] Parameter estimation for fractional-order chaotic systems by improved bird swarm optimization algorithm
    Zhang, Pei
    Yang, Renyu
    Yang, Renhuan
    Ren, Gong
    Yang, Xiuzeng
    Xu, Chuangbiao
    Xu, Baoguo
    Zhang, Huatao
    Cai, Yanning
    Lu, Yaosheng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (11):
  • [45] Optimal Parameter Estimation of Solar Cell using Simulated Annealing Inertia Weight Particle Swarm Optimization (SAIW-PSO)
    Kiani, Arooj Tariq
    Nadeem, Muhammad Faisal
    Ahmed, Ali
    Sajjad, Intisar Ali
    Hans, Muhammad Sohaib
    Martirano, Luigi
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [46] Dynamic ant colony optimization algorithm for parameter estimation of PEM fuel cell
    Ghosh, Sankhadeep
    Routh, Avijit
    Hembrem, Pintu
    Rahaman, Mehabub
    Ghosh, Avijit
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (02):
  • [47] Model updating of plate composite structure using particle swarm optimization algorithm
    Minh Tran Quang
    Bento, Ana Margarida
    Tiago, Ferradosa
    Sousa, Helder S.
    Binh Nguyen Duc
    Nhung Nguyen Thi Cam
    Matos, Jose Campos e
    EUROPEAN ASSOCIATION ON QUALITY CONTROL OF BRIDGES AND STRUCTURES, EUROSTRUCT 2023, VOL 6, ISS 5, 2023, : 1258 - 1265
  • [48] Dynamic Modeling of SOFC Based on Support Vector Regression Machine and Improved Particle Swarm Optimization
    Huo, Haibo
    Ji, Yi
    Kuang, Xinghong
    Liu, Yuqing
    Wu, Yanxiang
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 1853 - 1858
  • [49] Novel Improved Particle Swarm Optimization-Extreme Learning Machine Algorithm for State of Charge Estimation of Lithium-Ion Batteries
    Zhang, Chuyan
    Wang, Shunli
    Yu, Chunmei
    Xie, Yanxin
    Fernandez, Carlos
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (46) : 17209 - 17217
  • [50] Model-Based Damage Localization Using the Particle Swarm Optimization Algorithm and Dynamic Time Wrapping for Pattern Recreation
    Zacharakis, Ilias
    Giagopoulos, Dimitrios
    SENSORS, 2023, 23 (02)