Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm

被引:0
|
作者
Huynh, Duy C. [1 ]
Dunnigan, Matthew W. [1 ]
机构
[1] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new application of a dynamic particle swarm optimization (PSO) algorithm for parameter estimation of an induction machine. The dynamic PSO is one of the PSO variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO as linear time-varying parameters. The acceleration coefficients are varied during the evolution process of the PSO to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The algorithm uses the measurements of the three-phase stator currents, voltages, and the speed of the induction machine as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the induction machine parameters achieved using traditional tests such as the dc, no-load, and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, and dynamic PSO. The results show that the dynamic PSO is better than the standard PSO and GA for parameter estimation of the induction machine.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 50 条
  • [31] Parameter estimation of nonlinear thermoelectric structures using particle swarm optimization
    Ojeda, Daniel R. G.
    de Almeida, Luiz A. L.
    Vilcanqui, Omar A. C.
    SIMULATION MODELLING PRACTICE AND THEORY, 2018, 81 : 1 - 10
  • [32] Kinetic parameter estimation in hydrocracking using hybrid particle swarm optimization
    Kumar, V.
    Balasubramanian, P.
    FUEL, 2009, 88 (11) : 2171 - 2180
  • [33] Truss optimization with dynamic constraints using a particle swarm algorithm
    Gomes, Herbert Martins
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (01) : 957 - 968
  • [34] Particle swarm optimization algorithm using dynamic neighborhood adjustment
    Chen, Zi-Yu
    He, Zhong-Shi
    Zhang, Cheng
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2010, 23 (04): : 586 - 592
  • [35] Parameter Estimation of Different Photovoltaic Models Using Hybrid Particle Swarm Optimization and Gravitational Search Algorithm
    Gupta, Jyoti
    Hussain, Arif
    Singla, Manish Kumar
    Nijhawan, Parag
    Haider, Waseem
    Kotb, Hossam
    AboRas, Kareem M. M.
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [36] Parameter Estimation in Rainfall-Runoff Modelling Using Distributed Versions of Particle Swarm Optimization Algorithm
    Jakubcova, Michala
    Maca, Petr
    Pech, Pavel
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [37] Parameter estimation of vertical takeoff and landing aircrafts by using a PID controlling particle swarm optimization algorithm
    Lu, Yongzhong
    Yan, Danping
    Levy, David
    APPLIED INTELLIGENCE, 2016, 44 (04) : 793 - 815
  • [38] Parameter estimation of vertical takeoff and landing aircrafts by using a PID controlling particle swarm optimization algorithm
    Yongzhong Lu
    Danping Yan
    David Levy
    Applied Intelligence, 2016, 44 : 793 - 815
  • [39] Efficiency Estimation of the Induction Machine by Particle Swarm Optimization Using Rapid Test Data With Range Constraints
    Bijan, Mahmud Ghasemi
    Pillay, Pragasen
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (08) : 5883 - 5894
  • [40] Stator fault estimation in induction motors using particle swarm optimization
    Emara, HM
    Ammar, ME
    Bahgat, A
    Dorrah, HT
    IEEE IEMDC'03: IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1-3, 2003, : 1469 - 1475