Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm

被引:0
|
作者
Huynh, Duy C. [1 ]
Dunnigan, Matthew W. [1 ]
机构
[1] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
来源
IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010) | 2010年
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new application of a dynamic particle swarm optimization (PSO) algorithm for parameter estimation of an induction machine. The dynamic PSO is one of the PSO variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO as linear time-varying parameters. The acceleration coefficients are varied during the evolution process of the PSO to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The algorithm uses the measurements of the three-phase stator currents, voltages, and the speed of the induction machine as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the induction machine parameters achieved using traditional tests such as the dc, no-load, and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, and dynamic PSO. The results show that the dynamic PSO is better than the standard PSO and GA for parameter estimation of the induction machine.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 50 条
  • [21] Parameter estimation for time-delay chaotic system by particle swarm optimization
    Tang, Yinggan
    Guan, Xinping
    CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1391 - 1398
  • [22] Parameter estimation for chaotic system with initial random noises by particle swarm optimization
    Gao, Fei
    Lee, Ju-Jang
    Li, Zhuoqiu
    Tong, Hengqing
    Lue, Xiaohong
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 1286 - 1291
  • [23] Optimizing Design of Fuzzy Model for Software Cost Estimation Using Particle Swarm Optimization Algorithm
    Chhabra, Sonia
    Singh, Harvir
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2020, 19 (01)
  • [24] An improved particle swarm optimization algorithm for AVO elastic parameter inversion problem
    Wu, Qinghua
    Zhu, Zhixin
    Yan, Xuesong
    Gong, Wenyin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (09)
  • [25] Parameter identification of photovoltaic cell/module using genetic algorithm (GA) and particle swarm optimization (PSO)
    Dali, Ali
    Bouharchouche, Abderrezzak
    Diaf, Said
    3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
  • [26] The Induction Motor Parameter Estimation Using Genetic Algorithm
    Fortes, M. Z.
    Ferreira, V. H.
    Coelho, A. P. F.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (05) : 1273 - 1278
  • [27] Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm
    Mallick, Sourav
    Ghoshal, S. P.
    Acharjee, P.
    Thakur, S. S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 52 : 254 - 265
  • [28] Parameter estimation based on novel enhanced self-learning particle swarm optimization algorithm with Levy flight for PMSG
    Feng, Wan
    Li, Mengdi
    Zhang, Wenjuan
    Zhang, Haixia
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2023, 17 (05) : 1111 - 1122
  • [29] Accurate Parameter Estimation of a Hydro-Turbine Regulation System Using Adaptive Fuzzy Particle Swarm Optimization
    Liu, Dong
    Xiao, Zhihuai
    Li, Hongtao
    Hu, Xiao
    Malik, O. P.
    ENERGIES, 2019, 12 (20)
  • [30] Parameter estimation for chaotic systems using improved bird swarm algorithm
    Xu, Chuangbiao
    Yang, Renhuan
    MODERN PHYSICS LETTERS B, 2017, 31 (36):