Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm

被引:0
|
作者
Huynh, Duy C. [1 ]
Dunnigan, Matthew W. [1 ]
机构
[1] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new application of a dynamic particle swarm optimization (PSO) algorithm for parameter estimation of an induction machine. The dynamic PSO is one of the PSO variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO as linear time-varying parameters. The acceleration coefficients are varied during the evolution process of the PSO to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The algorithm uses the measurements of the three-phase stator currents, voltages, and the speed of the induction machine as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the induction machine parameters achieved using traditional tests such as the dc, no-load, and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, and dynamic PSO. The results show that the dynamic PSO is better than the standard PSO and GA for parameter estimation of the induction machine.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 50 条
  • [21] Optimization of dynamic parameter design of Stewart platform with Particle Swarm Optimization (PSO) algorithm
    Shahbazi, Masood
    Heidari, Mohammadreza
    Ahmadzadeh, Milad
    ADVANCES IN MECHANICAL ENGINEERING, 2024, 16 (06)
  • [22] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491
  • [23] Parameter analysis of particle swarm optimization algorithm
    Yao, Yao-Zhong
    Xu, Yu-Ru
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2007, 28 (11): : 1242 - 1246
  • [24] Parameter Evolution for a Particle Swarm Optimization Algorithm
    Zhou, Aimin
    Zhang, Guixu
    Konstantinidis, Andreas
    ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 33 - +
  • [25] A Novel Parameter Estimation Method for PMSM by Using Chaotic Particle Swarm Optimization With Dynamic Self-Optimization
    Feng, Wan
    Zhang, Wenjuan
    Huang, Shoudao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (07) : 8424 - 8432
  • [26] Modeling and Parameter Estimation of Particle Swarm Optimization Algorithm for Smart Power Grid
    He Tao
    Liang Zhidong
    Ye Xinquan
    Sun Shufeng
    Pang Jihong
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2015, 8 (06): : 229 - 237
  • [27] Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm
    Ma, Jieming
    Man, Ka Lok
    Guan, Sheng-Uei
    Ting, T. O.
    Wong, Prudence W. H.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (03) : 343 - 352
  • [28] Dynamic parameter tuning of particle swarm optimization
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2006, 1 (04) : 353 - 363
  • [29] Parameter Identification of Doubly Fed Induction Generator (DFIG) using Particle Swarm Optimization (PSO) algorithm
    Mohammed, Bakari
    Zohra, A. R. A. M. A. Fatima
    Omar, Ouledali
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (09): : 261 - 266
  • [30] Parameter and Loss Estimation of Three Phase Induction Motor from Dynamic Model using H - G Diagram and Particle Swarm Optimization
    Bhowmick, Diptarshi
    Chowdhury, Suparna Kar
    2018 IEEE 8TH POWER INDIA INTERNATIONAL CONFERENCE (PIICON), 2018,