Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm

被引:0
|
作者
Huynh, Duy C. [1 ]
Dunnigan, Matthew W. [1 ]
机构
[1] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
来源
IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010) | 2010年
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new application of a dynamic particle swarm optimization (PSO) algorithm for parameter estimation of an induction machine. The dynamic PSO is one of the PSO variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO as linear time-varying parameters. The acceleration coefficients are varied during the evolution process of the PSO to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The algorithm uses the measurements of the three-phase stator currents, voltages, and the speed of the induction machine as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the induction machine parameters achieved using traditional tests such as the dc, no-load, and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, and dynamic PSO. The results show that the dynamic PSO is better than the standard PSO and GA for parameter estimation of the induction machine.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 50 条
  • [11] Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing
    Mughal, Muhammad Ali
    Ma, Qishuang
    Xiao, Chunyan
    ENERGIES, 2017, 10 (08)
  • [12] Highly efficient photovoltaic parameter estimation using parallel particle swarm optimization on a GPU
    Gao, Shuhua
    Xiang, Cheng
    Lee, Tong Heng
    PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [13] Online estimation of induction motor parameters using a modified particle swarm optimization technique
    Tofighi, Elham Mohammadalipour
    Mahdizadeh, Amin
    Feyzi, Mohammad Reza
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 3645 - 3650
  • [14] A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems
    Banerjee, Amit
    Abu-Mahfouz, Issam
    CHAOS SOLITONS & FRACTALS, 2014, 58 : 65 - 83
  • [15] Parameter estimation of bilinear systems based on an adaptive particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Sistani, Mohammad-Bagher Naghibi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (07) : 1105 - 1111
  • [16] Aerodynamic Parameter Estimation of a Symmetric Projectile Using Adaptive Chaotic Mutation Particle Swarm Optimization
    Guan, Jun
    Yi, Wenjun
    Chang, Sijiang
    Li, Xiaoyuan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [17] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822
  • [18] Joint Parameter and State Estimation Based on Marginal Particle Filter and Particle Swarm Optimization
    Havangi, Ramazan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (08) : 3558 - 3575
  • [19] Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor
    Prata, Diego Martinez
    Schwaab, Marcio
    Lima, Enrique Luis
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2009, 64 (18) : 3953 - 3967
  • [20] Parameter Estimation of the MISO Nonlinear System Based on Improved Particle Swarm Optimization
    Fan, Huaike
    Lin, Weixing
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 2563 - 2567