Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm

被引:0
|
作者
Huynh, Duy C. [1 ]
Dunnigan, Matthew W. [1 ]
机构
[1] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new application of a dynamic particle swarm optimization (PSO) algorithm for parameter estimation of an induction machine. The dynamic PSO is one of the PSO variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO as linear time-varying parameters. The acceleration coefficients are varied during the evolution process of the PSO to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The algorithm uses the measurements of the three-phase stator currents, voltages, and the speed of the induction machine as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the induction machine parameters achieved using traditional tests such as the dc, no-load, and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, and dynamic PSO. The results show that the dynamic PSO is better than the standard PSO and GA for parameter estimation of the induction machine.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 50 条
  • [11] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [12] PARAMETER ESTIMATION OF PERMANENT MAGNET SYNCHRONOUS MACHINES USING PARTICLE SWARM OPTIMIZATION ALGORITHM
    Abdelwanis, Mohamed I.
    El-sehiemy, Ragab
    Hamida, Mohmed A.
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2022, 67 (04): : 377 - 382
  • [13] Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2633 - 2638
  • [14] A Parameter Adaptive Particle Swarm Optimization Algorithm for Extreme Learning Machine
    Li Bin
    Li Yibin
    Liu Meng
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 2448 - 2453
  • [15] A modified particle swarm optimization algorithm for parameter estimation of a biological system
    Mosayebi, Raziyeh
    Bahrami, Fariba
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2018, 15
  • [16] HYBRID PARTICLE SWARM - TABU SEARCH OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION
    Sebastian, Anish
    Schoen, Marco P.
    ASME 2013 DYNAMIC SYSTEMS AND CONTROL CONFERENCE, VOL 2, 2013,
  • [17] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [18] USING MODIFIED FUZZY PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PARAMETER ESTIMATION OF SURGE ARRESTERS MODELS
    Nafar, Mehdi
    Gharehpetian, Gevork B.
    Niknam, Taher
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (1B): : 567 - 581
  • [19] Comparison of the parameter estimation methods of surge arresters using modified particle swarm optimization algorithm
    Nafar, M.
    Gharehpetian, G. B.
    Niknam, T.
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2012, 22 (08): : 1146 - 1160
  • [20] Robust Estimation of IIR System's Parameter Using Adaptive Particle Swarm Optimization Algorithm
    Dash, Meera
    Panigrahi, Trilochan
    Sharma, Renu
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 41 - 50