Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm

被引:0
|
作者
Huynh, Duy C. [1 ]
Dunnigan, Matthew W. [1 ]
机构
[1] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
来源
IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010) | 2010年
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new application of a dynamic particle swarm optimization (PSO) algorithm for parameter estimation of an induction machine. The dynamic PSO is one of the PSO variants, which modifies the acceleration coefficients of the cognitive and social components in the velocity update equation of the PSO as linear time-varying parameters. The acceleration coefficients are varied during the evolution process of the PSO to improve the global search capability of particles in the early stage of the optimization process and direct the global optima at the end stage. The algorithm uses the measurements of the three-phase stator currents, voltages, and the speed of the induction machine as the inputs to the parameter estimator. The experimental results obtained compare the estimated parameters with the induction machine parameters achieved using traditional tests such as the dc, no-load, and locked-rotor tests. There is also a comparison of the solution quality between a genetic algorithm (GA), standard PSO, and dynamic PSO. The results show that the dynamic PSO is better than the standard PSO and GA for parameter estimation of the induction machine.
引用
收藏
页码:1414 / 1419
页数:6
相关论文
共 50 条
  • [1] Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine
    Darabi, Ahmad
    Alfi, Alireza
    Kiumarsi, Bahare
    Modares, Hamidreza
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (01):
  • [2] Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms
    Huynh, D. C.
    Dunnigan, M. W.
    IET ELECTRIC POWER APPLICATIONS, 2010, 4 (09) : 748 - 760
  • [3] Multi-objective parameter estimation of induction motor using particle swarm optimization
    Sakthivel, V. P.
    Bhuvaneswari, R.
    Subramanian, S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2010, 23 (03) : 302 - 312
  • [4] PARAMETER ESTIMATION OF PERMANENT MAGNET SYNCHRONOUS MACHINES USING PARTICLE SWARM OPTIMIZATION ALGORITHM
    Abdelwanis, Mohamed I.
    El-sehiemy, Ragab
    Hamida, Mohmed A.
    REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2022, 67 (04): : 377 - 382
  • [5] A Novel Parameter Estimation Method for PMSM by Using Chaotic Particle Swarm Optimization With Dynamic Self-Optimization
    Feng, Wan
    Zhang, Wenjuan
    Huang, Shoudao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (07) : 8424 - 8432
  • [6] PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM
    Wei, Jiamin
    Yu, Yongguang
    Wang, Sha
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (02): : 232 - 242
  • [7] Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm
    Huang, Yu
    Guo, Feng
    Li, Yongling
    Liu, Yufeng
    PLOS ONE, 2015, 10 (01):
  • [8] Parameter Estimation for One-Dimensional Chaotic Systems by Guaranteed Algorithm and Particle Swarm Optimization
    Sheludko, Anton S.
    IFAC PAPERSONLINE, 2018, 51 (32): : 337 - 342
  • [9] Induction Motor Parameter Estimation Using Sparse Grid Optimization Algorithm
    Duan, Fang
    Zivanovic, Rastko
    Al-Sarawi, Said
    Mba, David
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (04) : 1453 - 1461
  • [10] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03): : 102 - 111