"Bridge" graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation

被引:124
作者
Xu, Ping [1 ]
Hong, Jun [1 ]
Qian, Xiaoming [3 ]
Xu, Zhenzhen [4 ]
Xia, Hong [2 ]
Ni, Qing-Qing [2 ,4 ]
机构
[1] Shinshu Univ, Interdisciplinary Grad Sch Sci & Technol, Ueda, Nagano 3868567, Japan
[2] Shinshu Univ, Dept Mech Engn & Robot, Ueda, Nagano 3868567, Japan
[3] Tiangong Univ, Sch Text, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[4] Anhui Polytech Univ, Coll Text & Garments, Wuhu 241000, Anhui, Peoples R China
基金
日本学术振兴会;
关键词
Mg2+/Li+ separation; Graphene oxide; Nanofiltration; Ultrafiltration; Lithium extraction; SALT-LAKE BRINES; ULTRAFILTRATION MEMBRANES; ANTIFOULING PROPERTIES; LITHIUM EXTRACTION; SOLVENT-EXTRACTION; HIGH-PERFORMANCE; HIGH-FLUX; WATER; GO; POLYSULFONE;
D O I
10.1016/j.desal.2020.114522
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To improve the efficiency during the process of Mg2+/Li+ separation, a novel nanofiltration (NF) membrane was optimized by doping graphene oxide (GO) additives into the ultrafiltration (UF) base membrane. The effects of GO doping content on the morphology, structure and surface properties of UF membrane and the final NF membrane were studied comprehensively. The hydrophilic GO acted as a "bridge" between UF membrane and polyamide layer due to the "anchor effect", which significantly enhanced the interaction between base membrane and polyamide layer. The results revealed that with ultra-low GO doping content of 0.05 wt%, the final NF005 membrane exhibited a high selective separation capacity for Mg2+ and Li+ (S-Mg,S-Li approximate to 0.062), and the flux increased by about 119% compared with the pure NF0 membrane. Additionally, due to the high stability of membrane, the excellent separation capacity of NF005 membrane only changed slightly after 7-day cycle filtration test. Importantly, a small amount of GO doping greatly improved the permeability of both UF and NF membranes, which correspondingly improved the separation efficiency and accelerated the filtration rate. This work provides a new direction for designing membrane with high efficiency for Mg2+/Li+ separation, which is potential in the field of lithium extraction.
引用
收藏
页数:13
相关论文
共 62 条
  • [1] High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications
    Abdel-Karim, Ahmed
    Leaper, Sebastian
    Alberto, Monica
    Vijayaraghavan, Aravind
    Fan, Xiaolei
    Holmes, Stuart M.
    Souaya, Eglal R.
    Badawy, Mohamed I.
    Gorgojo, Patricia
    [J]. CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 789 - 799
  • [2] Graphene-based nanofiltration nanofiltration membranes for improving salt rejection, water flux and antifouling-A review
    Anand, Anisha
    Unnikrishnan, Binesh
    Mao, Ju-Yi
    Lin, Han-Jia
    Huang, Chih-Ching
    [J]. DESALINATION, 2018, 429 : 119 - 133
  • [3] Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties
    Bano, Saira
    Mahmood, Asif
    Kim, Seong-Joong
    Lee, Kew-Ho
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) : 2065 - 2071
  • [4] Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance
    Chae, Hee-Ro
    Lee, Jaewoo
    Lee, Chung-Hak
    Kim, In-Chul
    Park, Pyung-Kyu
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2015, 483 : 128 - 135
  • [5] Improved performance of Al-doped LiMn2O4 ion-sieves for Li+ adsorption
    Chen, Minmin
    Wu, Ruyun
    Ju, Shengui
    Zhang, Xiaoxian
    Xue, Feng
    Xing, Weihong
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2018, 261 : 29 - 34
  • [6] Development of recovering lithium from brines by selective-electrodialysis: Effect of coexisting cations on the migration of lithium
    Chen, Qing-Bai
    Ji, Zhi-Yong
    Liu, Jie
    Zhao, Ying-Ying
    Wang, Shi-Zhao
    Yuan, Jun-Sheng
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2018, 548 : 408 - 420
  • [7] Thermokinetics of lithium extraction with the novel extraction systems (tri-isobutyl phosphate plus ionic liquid plus kerosene)
    Chen, Shangqing
    Gao, Daolin
    Yu, Xiaoping
    Guo, Yafei
    Deng, Tianlong
    [J]. JOURNAL OF CHEMICAL THERMODYNAMICS, 2018, 123 : 79 - 85
  • [8] Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing
    Cheng, Chi
    Jiang, Gengping
    Garvey, Christopher J.
    Wang, Yuanyuan
    Simon, George P.
    Liu, Jefferson Z.
    Li, Dan
    [J]. SCIENCE ADVANCES, 2016, 2 (02):
  • [9] Layer-by-Layer Assembly of Graphene Oxide Nanosheets on Polyamide Membranes for Durable Reverse-Osmosis Applications
    Choi, Wansuk
    Choi, Jungkyu
    Bang, Joona
    Lee, Jung-Hyun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (23) : 12510 - 12519
  • [10] Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability
    Fang, Wangxi
    Shi, Lei
    Wang, Rong
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2014, 468 : 52 - 61