Deep CNN models for predicting COVID-19 in CT and x-ray images

被引:29
|
作者
Chaddad, Ahmad [1 ]
Hassan, Lama [1 ]
Desrosiers, Christian [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin, Peoples R China
[2] Univ Quebec, Ecole Technol Super, Montreal, PQ, Canada
关键词
convolutional neural network; Coronavirus disease 2019; transfer learning; radiomics; DISEASE; 2019; COVID-19; IMAGING FEATURES; CHEST CT; PNEUMONIA;
D O I
10.1117/1.JMI.8.S1.014502
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Coronavirus disease 2019 (COVID-19) is a new infection that has spread worldwide and with no automatic model to reliably detect its presence from images. We aim to investigate the potential of deep transfer learning to predict COVID-19 infection using chest computed tomography (CT) and x-ray images. Approach: Regions of interest (ROI) corresponding to ground-glass opacities (GGO), consolidations, and pleural effusions were labeled in 100 axial lung CT images from 60 COVID-19infected subjects. These segmented regions were then employed as an additional input to six deep convolutional neural network (CNN) architectures (AlexNet, DenseNet, GoogleNet, NASNet-Mobile, ResNet18, and DarkNet), pretrained on natural images, to differentiate between COVID-19 and normal CT images. We also explored the model's ability to classify x-ray images as COVID-19, non-COVID-19 pneumonia, or normal. Performance on test images was measured with global accuracy and area under the receiver operating characteristic curve (AUC). Results: When using raw CT images as input to the tested models, the highest accuracy of 82% and AUC of 88.16% is achieved. Incorporating the three ROIs as an additional model inputs further boosts performance to an accuracy of 82.30% and an AUC of 90.10% (DarkNet). For x-ray images, we obtained an outstanding AUC of 97% for classifying COVID-19 versus normal versus other. Combing chest CT and x-ray images, DarkNet architecture achieves the highest accuracy of 99.09% and AUC of 99.89% in classifying COVID-19 from non-COVID-19. Our results confirm the ability of deep CNNs with transfer learning to predict COVID-19 in both chest CT and x-ray images. Conclusions: The proposed method could help radiologists increase the accuracy of their diagnosis and increase efficiency in COVID-19 management. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Improved COVID-19 detection with chest x-ray images using deep learning
    Vedika Gupta
    Nikita Jain
    Jatin Sachdeva
    Mudit Gupta
    Senthilkumar Mohan
    Mohd Yazid Bajuri
    Ali Ahmadian
    Multimedia Tools and Applications, 2022, 81 : 37657 - 37680
  • [42] COVID-19 detection with X-ray images by using transfer learning
    Mahanty, Chandrakanta
    Kumar, Raghvendra
    Mishra, Brojo Kishore
    Barna, Cornel
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (02) : 1717 - 1726
  • [43] Deep learning based detection and analysis of COVID-19 on chest X-ray images
    Jain, Rachna
    Gupta, Meenu
    Taneja, Soham
    Hemanth, D. Jude
    APPLIED INTELLIGENCE, 2021, 51 (03) : 1690 - 1700
  • [44] A deep ensemble learning framework for COVID-19 detection in chest X-ray images
    Asif, Sohaib
    Qurrat-ul-Ain
    Awais, Muhammad
    Amjad, Kamran
    Bilal, Omair
    Al-Sabri, Raeed
    Abdullah, Monir
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2024, 13 (01):
  • [45] COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
    Akter, Shamima
    Shamrat, F. M. Javed Mehedi
    Chakraborty, Sovon
    Karim, Asif
    Azam, Sami
    BIOLOGY-BASEL, 2021, 10 (11):
  • [46] Deep learning framework for early detection of COVID-19 using X-ray images
    Kainat Khero
    Muhammad Usman
    Alvis Fong
    Multimedia Tools and Applications, 2024, 83 : 6883 - 6908
  • [47] Improved COVID-19 detection with chest x-ray images using deep learning
    Gupta, Vedika
    Jain, Nikita
    Sachdeva, Jatin
    Gupta, Mudit
    Mohan, Senthilkumar
    Bajuri, Mohd Yazid
    Ahmadian, Ali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37657 - 37680
  • [48] Detection of Covid-19 and Pneumonia from Colorized X-Ray Images by Deep Learning
    Balik, Esra
    Kaya, Mehmet
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [49] Predicting COVID-19 from Chest X-ray Images using a New Deep Learning Architecture
    Oraibi, Zakariya A.
    Albasri, Safaa
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [50] Detection of COVID-19 in Chest X-ray Images: A Big Data Enabled Deep Learning Approach
    Awan, Mazhar Javed
    Bilal, Muhammad Haseeb
    Yasin, Awais
    Nobanee, Haitham
    Khan, Nabeel Sabir
    Zain, Azlan Mohd
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (19)