Deep CNN models for predicting COVID-19 in CT and x-ray images

被引:29
|
作者
Chaddad, Ahmad [1 ]
Hassan, Lama [1 ]
Desrosiers, Christian [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin, Peoples R China
[2] Univ Quebec, Ecole Technol Super, Montreal, PQ, Canada
关键词
convolutional neural network; Coronavirus disease 2019; transfer learning; radiomics; DISEASE; 2019; COVID-19; IMAGING FEATURES; CHEST CT; PNEUMONIA;
D O I
10.1117/1.JMI.8.S1.014502
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Coronavirus disease 2019 (COVID-19) is a new infection that has spread worldwide and with no automatic model to reliably detect its presence from images. We aim to investigate the potential of deep transfer learning to predict COVID-19 infection using chest computed tomography (CT) and x-ray images. Approach: Regions of interest (ROI) corresponding to ground-glass opacities (GGO), consolidations, and pleural effusions were labeled in 100 axial lung CT images from 60 COVID-19infected subjects. These segmented regions were then employed as an additional input to six deep convolutional neural network (CNN) architectures (AlexNet, DenseNet, GoogleNet, NASNet-Mobile, ResNet18, and DarkNet), pretrained on natural images, to differentiate between COVID-19 and normal CT images. We also explored the model's ability to classify x-ray images as COVID-19, non-COVID-19 pneumonia, or normal. Performance on test images was measured with global accuracy and area under the receiver operating characteristic curve (AUC). Results: When using raw CT images as input to the tested models, the highest accuracy of 82% and AUC of 88.16% is achieved. Incorporating the three ROIs as an additional model inputs further boosts performance to an accuracy of 82.30% and an AUC of 90.10% (DarkNet). For x-ray images, we obtained an outstanding AUC of 97% for classifying COVID-19 versus normal versus other. Combing chest CT and x-ray images, DarkNet architecture achieves the highest accuracy of 99.09% and AUC of 99.89% in classifying COVID-19 from non-COVID-19. Our results confirm the ability of deep CNNs with transfer learning to predict COVID-19 in both chest CT and x-ray images. Conclusions: The proposed method could help radiologists increase the accuracy of their diagnosis and increase efficiency in COVID-19 management. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [32] Deep Viewing for Covid-19 Detection from X-Ray Using CNN Based Architecture
    Ghose, Partho
    Acharjee, Uzzal Kumar
    Islam, Md. Amirul
    Sharmin, Selina
    Uddin, Md. Ashraf
    2021 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTERSCIENCE AND INFORMATICS (EECSI) 2021, 2021, : 186 - 191
  • [33] Integrated ensemble CNN and explainable AI for COVID-19 diagnosis from CT scan and X-ray images
    Rajpoot, Reenu
    Gour, Mahesh
    Jain, Sweta
    Semwal, Vijay Bhaskar
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Classification of COVID-19 chest X-Ray and CT images using a type of dynamic CNN modification method
    Jia, Guangyu
    Lam, Hak-Keung
    Xu, Yujia
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [35] Fully automatic deep convolutional approaches for the analysis of COVID-19 using chest X-ray images
    de Moura, Joaquim
    Novo, Jorge
    Ortega, Marcos
    APPLIED SOFT COMPUTING, 2022, 115
  • [36] COVID-19 Detection from Chest X-ray Images Using Feature Fusion and Deep Learning
    Nur-A-Alam
    Ahsan, Mominul
    Based, Md. Abdul
    Haider, Julfikar
    Kowalski, Marcin
    SENSORS, 2021, 21 (04) : 1 - 30
  • [37] Concat_CNN: A Model to Detect COVID-19 from Chest X-ray Images with Deep Learning
    Saha P.
    Neogy S.
    SN Computer Science, 3 (4)
  • [38] Deep Learning for Reliable Classification of COVID-19, MERS, and SARS from Chest X-ray Images
    Tahir, Anas M.
    Qiblawey, Yazan
    Khandakar, Amith
    Rahman, Tawsifur
    Khurshid, Uzair
    Musharavati, Farayi
    Islam, M. T.
    Kiranyaz, Serkan
    Al-Maadeed, Somaya
    Chowdhury, Muhammad E. H.
    COGNITIVE COMPUTATION, 2022, 14 (05) : 1752 - 1772
  • [39] Deep learning framework for early detection of COVID-19 using X-ray images
    Khero, Kainat
    Usman, Muhammad
    Fong, Alvis
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 6883 - 6908
  • [40] An Interpretable Deep Learning Model for Covid-19 Detection With Chest X-Ray Images
    Singh, Gurmail
    Yow, Kin-Choong
    IEEE ACCESS, 2021, 9 : 85198 - 85208