Isoparametric hypersurfaces with four principal curvatures

被引:101
作者
Cecil, Thomas E. [1 ]
Chi, Quo-Shin [2 ]
Jensen, Gary R. [2 ]
机构
[1] Coll Holy Cross, Worcester, MA 01610 USA
[2] Washington Univ, St Louis, MO USA
基金
美国国家科学基金会;
关键词
D O I
10.4007/annals.2007.166.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an isoparametric hypersurface in the sphere S-n with four distinct principal curvatures. Munzner showed that the four principal curvatures can have at most two distinct multiplicities m(1), m(2), and Stolz showed that the pair (m(1), m(2)) must either be (2, 2), (4, 5), or be equal to the multiplicities of an isoparametric hypersurface of FKM-type, constructed by Ferns, Karcher and Munzner from orthogonal representations of Clifford algebras. In this paper, we prove that if the multiplicities satisfy m(2) >= 2m(1)-1, then the isoparametric hypersurface M must be of FKM-type. Together with known results of Takagi for the case m(1) = 1, and Ozeki and Takeuchi for m(1) = 2, this handles all possible pairs of multiplicities except for four cases, for which the classification problem remains open.
引用
收藏
页码:1 / 76
页数:76
相关论文
共 36 条
[2]  
Atiyah M.F., 1964, TOPOLOGY S1, V3, P3, DOI 10.1016/0040-9383(64)90003-5
[3]   On the remarkable families of isoparametric hypersurfaces in spherical spaces. [J].
Cartan, E .
MATHEMATISCHE ZEITSCHRIFT, 1939, 45 :335-367
[4]  
Cartan E., 1940, REV U TUCUMAN A, V1, P5
[5]  
CARTAN E., 1939, C R C MATH LIEGE, P30
[6]  
Cartan E., 1938, Ann. Mat. Pura Appl, V17, P177, DOI [10.1007/BF02410700, DOI 10.1007/BF02410700]
[7]  
CARTER S, 1985, P LOND MATH SOC, V51, P520
[8]  
CECIL T, 1985, TIGHT TAUT IMMERSION, V107
[9]  
DANILOV V, 1998, ALGEBRAIC CURVES ALG
[10]   ISOPARAMETRIC HYPERSURFACES, CASE G=6,M=1 [J].
DORFMEISTER, J ;
NEHER, E .
COMMUNICATIONS IN ALGEBRA, 1985, 13 (11) :2299-2368