Parabolic bundles on algebraic surfaces I - The Donaldson-Uhlenbeck compactification

被引:4
作者
Balaji, V. [1 ]
Dey, A. [2 ]
Parthasarathi, R. [1 ]
机构
[1] Chennai Math Inst, Madras 600017, Tamil Nadu, India
[2] Inst Math Sci, Madras 600113, Tamil Nadu, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2008年 / 118卷 / 01期
关键词
parabolic bundles; Donaldson polynomials; Uhlenbeck compactification; moduli spaces;
D O I
10.1007/s12044-008-0004-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to construct the parabolic version of the Donaldson-Uhlenbeck compactification for the moduli space of parabolic stable bundles on an algebraic surface with parabolic structures along a divisor with normal crossing singularities. We prove the non-emptiness of the moduli space of parabolic stable bundles of rank 2.
引用
收藏
页码:43 / 79
页数:37
相关论文
共 31 条
[1]   Principal bundles over projective manifolds with parabolic structure over a divisor [J].
Balaji, V ;
Biswas, I ;
Nagaraj, DS .
TOHOKU MATHEMATICAL JOURNAL, 2001, 53 (03) :337-367
[2]  
BALAJI V, UNPUB IRREDUCIBILITY
[3]  
Baranovsky V, 2000, J DIFFER GEOM, V55, P193
[4]  
Biquard O., 1992, INT J MATH, V3, P441
[5]   Parabolic bundles as orbifold bundles [J].
Biswas, I .
DUKE MATHEMATICAL JOURNAL, 1997, 88 (02) :305-325
[6]   Chern classes for parabolic bundles [J].
Biswas, I .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1997, 37 (04) :597-613
[7]  
Biswas I, 1995, MATH RES LETT, V2, P783
[8]   Irreducibility of the punctual quotient scheme of a surface [J].
Ellingsrud, G ;
Lehn, M .
ARKIV FOR MATEMATIK, 1999, 37 (02) :245-254
[9]  
Grothendieck A., 1957, Tohoku Math. J., V9, P119, DOI [10.2748/tmj/1178244839, DOI 10.2748/TMJ/1178244839]
[10]   AN EQUIVARIANT VERSION OF GRAUERTS OKA PRINCIPLE [J].
HEINZNER, P ;
KUTZSCHEBAUCH, F .
INVENTIONES MATHEMATICAE, 1995, 119 (02) :317-346