ON THE FOCUSING ENERGY-CRITICAL FRACTIONAL NONLINEAR SCHRODNGER EQUATIONS

被引:1
作者
Cho, Yonggeun [1 ,2 ]
Hwang, Gyeongha [3 ]
Ozawa, Tohru [4 ]
机构
[1] Chonbuk Natl Univ, Dept Math, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South Korea
[3] Natl Taiwan Univ, Natl Ctr Theoret Sci, 1 Sec 4 Roosevelt Rd, Taipei 106, Taiwan
[4] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
关键词
GLOBAL WELL-POSEDNESS; SCHRODINGER-EQUATIONS; BLOW-UP; SOBOLEV INEQUALITIES; COMPACTNESS; SCATTERING; 4TH-ORDER; CONSTANTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the fractional nonlinear Schrodinger equation (FNLS) with non-local dispersion vertical bar V vertical bar(alpha) and focusing energy-critical Hartree type nonlinearity [-(vertical bar x vertical bar(-2 alpha) *vertical bar u vertical bar(2))u]. We first establish a global well-posedness of radial case in energy space by adopting Kenig-Merle arguments [20] when the initial energy and initial kinetic energy are less than those of ground state, respectively. We revisit and highlight long time perturbation, profile decomposition and localized virial inequality. As an application of the localized virial inequality, we provide a proof for finite time blowup for energy critical Hartree equations via commutator technique introduced in [2].
引用
收藏
页码:161 / 192
页数:32
相关论文
共 30 条
  • [1] Aubin T., 1976, J. Differential Geom, V11, P573, DOI DOI 10.4310/JDG/1214433725
  • [2] Boulenger T., ANN SCI ENS IN PRESS
  • [3] Blowup for fractional NLS
    Boulenger, Thomas
    Himmelsbach, Dominik
    Lenzmann, Enno
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2569 - 2603
  • [4] ON INHOMOGENEOUS STRICHARTZ ESTIMATES FOR FRACTIONAL SCHRoDINGER EQUATIONS AND THEIR APPLICATIONS
    Cho, Chu-Hee
    Koh, Youngwoo
    Seo, Ihyeok
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) : 1905 - 1926
  • [5] FINITE TIME BLOWUP FOR THE FOURTH-ORDER NLS
    Cho, Yonggeun
    Ozawa, Tohru
    Wang, Chengbo
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 615 - 640
  • [6] Strichartz Estimates in Spherical Coordinates
    Cho, Yonggeun
    Lee, Sanghyuk
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (03) : 991 - 1020
  • [7] Profile decompositions of fractional Schrodinger equations with angularly regular data
    Cho, Yonggeun
    Hwang, Gyeongha
    Kwon, Soonsik
    Lee, Sanghyuk
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 3011 - 3037
  • [8] On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity
    Cho, Yonggeun
    Hajaiej, Hichem
    Hwang, Gyeongha
    Ozawa, Tohru
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02): : 193 - 224
  • [9] Profile decompositions and blowup phenomena of mass critical fractional Schrodinger equations
    Cho, Yonggeun
    Hwang, Gyeongha
    Kwon, Soonsik
    Lee, Sanghyuk
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 : 12 - 29
  • [10] REMARKS ON SOME DISPERSIVE ESTIMATES
    Cho, Yonggeun
    Ozawa, Tohru
    Xia, Suxia
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) : 1121 - 1128