Construction of continuous proton-conduction channels through polyvinylimidazole nanotubes to enhance proton conductivity of polymer electrolyte membrane

被引:9
作者
Hou, Jinghe [1 ]
Sun, Xiang [1 ]
Gu, Xinxin [1 ]
Liu, Shanshan [1 ]
Xiao, Zhenyu [1 ]
Liu, Gang [1 ]
Ding, Huili [1 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Inst Polymer Sci & Engn, Tianjin 300130, Peoples R China
关键词
polyvinylimidazole nanotubes; proton conduction channels; proton exchange membrane; sulfonated poly (aryl ether sulfone); POLY(ETHER ETHER KETONE); EXCHANGE MEMBRANES; FUEL-CELL; GRAPHENE OXIDE; IMIDAZOLE MICROCAPSULES; HYBRID MEMBRANES; SULFONE); DEGRADATION; COMPOSITES; CHAINS;
D O I
10.1002/app.47106
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Proton-exchange membranes (PEMs) with high proton conductivity and low cost are crucial for the commercial promotion of proton-exchange membrane fuel cells. In this study, inspired by the mechanism of plant ducts transporting moisture and biological proton transfer, polyvinylimidazole nanotubes (PVINTs) are prepared by a simple template method and then incorporated into a sulfonated poly(aryl ether sulfone) (SPES) matrix to fabricate composite membranes (SPES/PVINTs-X, where X is PVINT content in percent). The membranes were fully characterized using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and mechanical testing. The results indicated that the incorporation of PVINTs could improve the mechanical performance and dimensional stability of the membranes. In particular, the SPES/PVINTs-7.5 composite membrane achieves remarkable results of proton conductivity of 0.212 S/cm under fully hydrated conditions at 80 degrees C, which is 56% higher than that of the SPES membrane. The construction of proton-transfer channels through polymer nanotubes described in this paper may provide new insights into the preparation of composite proton-exchange membranes. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47106.
引用
收藏
页数:12
相关论文
共 51 条
[1]   Facile preparation of blend proton exchange membranes with highly sulfonated poly(arylene ether) and poly(arylene ether sulfone) bearing dense triazoles [J].
Ahn, Min-Kyoon ;
Lee, Bongho ;
Jang, Joseph ;
Min, Cheong-Min ;
Lee, Su-Bin ;
Pak, Chanho ;
Lee, Jae-Suk .
JOURNAL OF MEMBRANE SCIENCE, 2018, 560 :58-66
[2]  
[Anonymous], 2007, ANGEW CHEM
[3]   Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes [J].
Bai, Huijuan ;
Zhang, Haoqin ;
He, Yakun ;
Liu, Jindun ;
Zhang, Bing ;
Wang, Jingtao .
JOURNAL OF MEMBRANE SCIENCE, 2014, 454 :220-232
[4]   Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells [J].
Bai, Zongwu ;
Durstock, Michael F. ;
Dang, Thuy D. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 281 (1-2) :508-516
[5]   Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives [J].
Bakangura, Erigene ;
Wu, Liang ;
Ge, Liang ;
Yang, Zhengjin ;
Xu, Tongwen .
PROGRESS IN POLYMER SCIENCE, 2016, 57 :103-152
[6]  
Bu F., 2017, J MEMBRANE SCI, V545, P167
[7]   Channel-facilitated molecule and ion transport across polymer composite membranes [J].
Cao, Li ;
He, Xueyi ;
Jiang, Zhongyi ;
Li, Xueqin ;
Li, Yifan ;
Ren, Yanxiong ;
Yang, Leixin ;
Wu, Hong .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (22) :6725-6745
[8]   Nafion-Carbon Nanocomposite Membranes Prepared Using Hydrothermal Carbonization for Proton-Exchange-Membrane Fuel Cells [J].
Chai, Zhanli ;
Wang, Cheng ;
Zhang, Hongjie ;
Doherty, Cara M. ;
Ladewig, Bradley P. ;
Hill, Anita J. ;
Wang, Huanting .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (24) :4394-4399
[9]   Structures and solid-state dynamics of one-dimensional water chains stabilized by imidazole channels [J].
Cheruzel, LE ;
Pometun, MS ;
Cecil, MR ;
Mashuta, MS ;
Wittebort, RJ ;
Buchanan, RM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (44) :5452-5455
[10]  
Dang J, 2017, J MEMBRANE SCI, V545, P88