Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.)

被引:51
|
作者
Feghhenabi, Faride [1 ]
Hadi, Hashem [1 ]
Khodaverdiloo, Habib [2 ]
van Genuchten, Martinus Th [3 ,4 ]
机构
[1] Urmia Univ, Dept Plant Prod & Genet, Orumiyeh, Iran
[2] Urmia Univ, Dept Soil Sci, Orumiyeh, Iran
[3] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands
[4] Sao Paulo State Univ, Ctr Environm Studies, CEA, UNESP, Rio Claro, SP, Brazil
关键词
Potassium silicate; Salinity response functions; Seed priming; Seedling; Emergence; OXIDATIVE STRESS; OSMOTIC-STRESS; SALT TOLERANCE; IMPROVES; SEEDLINGS; SORGHUM; GROWTH; IRRIGATION; METABOLISM; TOMATO;
D O I
10.1016/j.agwat.2020.106022
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Seed priming is known to often alleviate salinity stress during seed emergence and subsequent crop growth. This study compares the effects of salinity stress on the germination and emergence of wheat (Triticum aestivum L.) seeds untreated (control) and primed with ascorbic acid (Asc), potassium silicate (K2SiO3), proline (Pro), spermidine (Spd) and Lake Urmia saline water (LUsw). Saline water from Lake Urmia (Iran) was diluted to produce salinities with electrical conductivities (EC) of 2, 4, 6, 8, 10, 12, 14, 20 dS m(-1), while distilled water (EC similar to 0 dS m(-1)) was used for the control. Two independent sets of experiments were conducted. The first experiments were used to select the most effective concentration of each priming agent based on the final germination percentage (GP) and germination rate (GR). The second set of experiments aimed to analyze the measured data in terms of salinity response functions in order to quantitatively determine the most effective priming agent(s). The first experiments showed that the most effective concentrations of Spd (0.5 mM), Pro (25 mM), K2SiO3 (1.5 mM) and LUsw (100 mg L-1) mitigated the negative impacts of salinity on GR by 32, 18, 17 and 22 %, respectively. The second experiment showed that the Maas and Hoffman (1977) and van Genuchten and Hoffman (1984) salinity response functions provided effective descriptions of seedling and early growth response to salinity stress. Mean values of the salinity threshold (EC*) and the salinity at which a given trait was reduced by 50 percent (EC50) in these functions were 3.4 and 10.8 dS m(-1) for the control, respectively. By comparison, the EC* values for the K2SiO3, Pro, Spd and LUsw primed seeds were 5.3, 4.5, 4.7, and 4.2 dS m(-1), respectively, and the EC50 values were 12.4, 11.4, 11.9, and 9.4 dS m(-1), respectively. The beneficial effects of K2SiO3 on seedling growth were more evident than those of the other priming agents. K2SiO3 had the highest effect on EC* and EC50 of the vitality index (VI), showing increases of 151 and 34 %, respectively. The highest increases of EC* and EC50 for seedling dry weight (72 and 24 %, respectively) were obtained with Spd and K2SiO3. The findings provide much insight on relieving the negative effects of salinity through cost-effective seed priming operations so as to improve the production of wheat under saline conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Effects of Priming on Seed Germination, Physico-Chemistry and Yield of Late Sown Wheat Crop (Triticum aestivum L.)
    Faisal, Summiya
    Muhammad, Sohaib
    Luqman, Muhammad
    Hasnain, Muhammad
    Rasool, Aneela
    Awan, Muhammad Umer Farooq
    Khan, Zafar Iqbal
    Hussain, Iftikhar
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2023, 32 (02): : 1113 - 1124
  • [22] Molecular characterization of salinity tolerance in wheat (Triticum aestivum L.)
    Bhutta, Waqas Manzoor
    Amjad, Muhammad
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2015, 61 (11) : 1641 - 1648
  • [23] Toxicity of Cu, Pb, and Zn on Seed Germination and Young Seedlings of Wheat (Triticum aestivum L.)
    Wang, Haiou
    Zhong, Guangrong
    Shi, Guoqing
    Pan, Fangting
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IV, PT 3, 2011, 346 : 231 - 240
  • [24] SEED PRIMING WITH GLYCINE BETAINE IMPROVE SEED GERMINATION CHARACTERISTICS AND ANTIOXIDANT CAPACITY OF WHEAT (TRITICUM AESTIVUM L.) SEEDLINGS UNDER WATER-STRESS CONDITIONS
    Ahmed, N.
    Zhang, Y.
    Yu, H.
    Gabar, A.
    Zhou, Y.
    Li, Z.
    Zhang, M.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (04): : 8333 - 8350
  • [25] Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance
    Farooq, M.
    Basra, S. M. A.
    Rehman, H.
    Saleem, B. A.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2008, 194 (01) : 55 - 60
  • [26] Glycine Betaine-Mediated Root Priming Improves Water Stress Tolerance in Wheat (Triticum aestivum L.)
    Ahmed, Nazir
    Zhu, Mingyuan
    Li, Qiuxia
    Wang, Xilei
    Wan, Jiachi
    Zhang, Yushi
    AGRICULTURE-BASEL, 2021, 11 (11):
  • [27] Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum
    Rawat, Laxmi
    Singh, Y.
    Shukla, N.
    Kumar, J.
    PLANT AND SOIL, 2011, 347 (1-2) : 387 - 400
  • [28] RESPONSE OF WHEAT VARIETIES TO SALINITY STRESS AS AMELIORATED BY SEED PRIMING
    Khan, Attaullah
    Shafi, Muhammad
    Bakht, Jehan
    Khan, Muhammad Owais
    Anwar, Shazma
    PAKISTAN JOURNAL OF BOTANY, 2019, 51 (06) : 1969 - 1978
  • [29] PHYSIOLOGICAL CHARACTERIZATION OF WHEAT (Triticum aestivum L.) GENOTYPES UNDER SALINITY
    Atiq-ur-Rahman, Muhammad
    Saqib, Muhammad
    Akhtar, Javaid
    Ahmad, Rashid
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 51 (04): : 983 - 990
  • [30] Genetic variability of salinity tolerance in spring wheat (Triticum aestivum L.)
    Bhutta, Waqas Manzoor
    Hanif, Muhammad
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2010, 60 (03) : 256 - 261